scholarly journals Characterisation of Biogenic Amines in Fish Collected from Sarawak Using Gas Chromatography

2017 ◽  
Vol 6 (2) ◽  
pp. 21-27 ◽  
Author(s):  
Muhammad Abdurrahman Munir ◽  
Zaini Assim ◽  
Fasihuddin Ahmad

Determination of five biogenic amines (heptylamine, histamine, tyramine, cadaverine and spermidine) in fish was optimised and validated using gas chromatography – flame ionisation detector (GC-FID) followed by confirmation using mass spectrometry (MS). The biogenic amines were derivatised using BSA (N, O-bis (trimethylsilyl) acetamide) + TMCS (trimethylchlorosilane) as a derivatisation agent. The linear working range was between 0.9995 – 0.9999. The limit of detection (LODs) were in the range of 1.20 – 2.90 μg/mL. The efficiency of recovery for every biogenic amines, which ranged between 98.41 – 116.39%, indicated that analytical procedure can be used to extract biogenic amines in fish. Using GC-FID, the concentration of five biogenic amines were simultaneously determined in fresh and salted fish samples such as mackerel (Scomberomorus guttatus), sardine (Sardinella gibbosa), whiptail (Himantura walga), gourami (Trichogaster pectoralis) and toli shad (Tenualosa toli). Histamine is found in fresh mackerel (S. guttatus) and sardine (S. gibbosa) at concentration of 5.96 and 2.69 mg/kg, respectively. Salted sardine (S. gibbosa) has histamine concentration of 8.95 mg/kg. All histamine concentrations detected were below 50 mg/kg (FDA regulation) which is below the permissible threshold associated with scombroid poisoning. Cadaverine was detected in fresh sardine (S. gibbosa), whiptail stingray (H. walga) and salted gourami (T. pectoralis) with concentration of 4.96, 146.39 and 18.80 mg/kg, respectively. None of them has biogenic amines, and histamine within FDA regulation levels (below 50 mg/kg).

2019 ◽  
Vol 11 (14) ◽  
pp. 1898-1907 ◽  
Author(s):  
Marzieh Kamankesh ◽  
Abdorreza Mohammadi ◽  
Afsaneh Mollahosseini ◽  
Shahram Seidi

Electromembrane extraction (EME) and μ-dispersive liquid–liquid microextraction (μ-DLLME) have been applied in the simultaneous determination of biogenic amines (tyramine, histamine, putrescine and cadaverine) in canned fish samples.


2017 ◽  
Vol 68 (4) ◽  
pp. 666-670 ◽  
Author(s):  
Mirela Mihon ◽  
Catalin Stelian Tuta ◽  
Alina Catrinel Ion ◽  
Dana Niculae ◽  
Vasile Lavric

The aim of this work was the development and validation of a fast analytical method to determine the residual solvents content in radiopharmaceuticals such as: 18F-Fluorodeoxyglucose (18F-FDG), 18F-Fluoroestradiol (18F-FES), 18F-Fluorothymidine (18F-FLT),18F-Fluoromisonidazole (18F-FMISO). Radiopharmaceuticals are radioactive preparations for medical purposes used in nuclear medicine as tracers in diagnostic imaging and treatment of certain diseases. Positron Emission Tomography (PET) is a medical imaging technique that consists in introducing into the body of a small amount of a biologically active chemical compound labelled with a short lived positron-emitting radioisotope (18F, 11C, 68Ga). Residual solvents are critical impurities in radiopharmaceuticals that can affect labelling, stability and physicochemical properties of drugs. Therefore, the determination of these solvents is essential for quality control of radiopharmaceuticals. Validation of the control method for residual solvents by gas chromatography is referred by the European Pharmacopoeia using a special injection technique (head space). The parameters of the method, which comply with International Conference on Harmonization guidelines, are: accuracy, precision, linearity, limit of detection, limit of quantification and robustness. The proposed method (direct gas chromatography injection) proved to be linear, precise, accurate and robust. Good linearity was achieved for all the solvents and correlation coefficients (R2) for each residual solvent were found more than 0.99.


1983 ◽  
Vol 48 (3) ◽  
pp. 722-734
Author(s):  
Martin Koval

The flame ionisation detector response to C6-C11 aliphatic hydrocarbon solutions in carbon disulphide in the concentration range between 1.3-9.5 mg ml-1 retained lineary despite the excess of solvent entering the detector simultaneously with the analyte. Pure carbon disulphide exhibited a small positive detector response which did not interfere in calibration procedure and which, under certain GC conditions, inverted to negative values. This response was not proportional to the injected volume and was strongly influenced by the column temperature and/or bleed. On the basis of these findings, a method compatible with the widely used charcoal tube carbon disulphide desorption procedure was developed and evaluated. It consists of static desorption of the sum of aliphatic alkanes and cycloalkanes from the activated charcoal after which an internal standard is added to the supernatant eluate. The resulting carbon disulphide solution is analysed on a highly polar stationary phase 1,2,3-tris(2-cyanoethoxy)propane where the solvent and the analyte coelute in a single peak, the height of which is practically proportional to the sum of alkanes and cycloalkanes present. This also makes determinations of other substances present in the sample more simple. The field test of the proposed method yielded values comparable in precision and accuracy with a control infrared spectrophotometric method.


Sign in / Sign up

Export Citation Format

Share Document