scholarly journals EVALUATION OF ENGINEERING PROPERTIES OF THERMAL POWER PLANT WASTE FOR SUBGRADE TREATMENT

2021 ◽  
Vol 12 (2) ◽  
pp. 112-123
Author(s):  
Md. Belal Hossain ◽  
Md. Roknuzzaman ◽  
Md. Asib Biswas ◽  
Motaharul Islam

Soft cohesive soils have low strength, high plasticity, and a large expansion ratio making them unsuitable as a road subgrade. This study aims to evaluate the potential of power plant waste (fly ash) from the Barapukuria Thermal Power Plant, Dinajpur, Bangladesh to improve the characteristics of such soft cohesive soil. X-ray fluorescence test conducted to classify the power plant fly ash and the type was identified as “Class F” according to “American Association of State Highway and Transportation Officials” and "American Society for Testing and Materials". Laboratory tests were conducted on clay soil obtained from Dinajpur region modified by the collected power plant waste. As the Class F fly ash has low cementing property, 3% cement was added with it. Cement mixed soil was modified with 5%, 10%, 15%, and 20% fly ash respectively. Specific Gravity, Atterberg limits, Modified Proctor Compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests were conducted. The study reveals that there is a decrease in specific gravity, dry density, and plasticity index with the addition of power plant waste. On the other hand, there is an increase in optimum moisture content, UCS, and CBR value. UCS and CBR values were found to be improved remarkably. Soaked CBR value of soil is found to be improved from 2.79% to 92.59% when treated with 5% fly ash and 3% cement. The UCS value of this modified soil was 560.36 kPa. The stabilized soil thus obtained meets the requirements for subgrade as specified by the Local Government Engineering Department (LGED)’s design manual (2005), Bangladesh. Since there is a possibility of leaching by dumping a large quantity of fly ash in the pond, the use of fly ash from the power plants to improve soft cohesive soils for road subgrade may be an environment-friendly alternative to its disposal in the ponds.

Transport ◽  
2016 ◽  
Vol 33 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Mirjana Vukićević ◽  
Zdenka Popović ◽  
Jovan Despotović ◽  
Luka Lazarević

Approximately 7 million tons of fly ash and slag are produced in thermal power plants in Serbia every year, only 3% of which is used in the cement industry. About 300 million tons of the ash-slag mixture are disposed in landfills, occupying an area of approximately 1600 hectares and generating environmental issues. Fly ash from Serbian power plants has pozzolanic properties and due to low concentration of calcium compounds (less than 10% CaO), they do not have self-cementing properties. According to the ASTM C618-15, this ash is from class F. According to the European Standard EN 197-1:2011, this ash is siliceous (type V) ash. From April 2014 to May 2015, an investigation of engineering properties of fly ash and mixtures of fly ash and slag from landfill (without or with binders of cement/lime) was conducted at the Laboratory of Soil Mechanics at the Faculty of Civil Engineering of the University of Belgrade (Serbia) and at the Institute for Testing of Materials – IMS Institute in Belgrade. The laboratory test results were showed in the study ‘Utilization of fly ash and slag produced in the TPP JP EPS thermal power plants for construction of railways’. Four kinds of waste materials from Serbian power plants were laboratory tested: (a) an ash-slag mixture from landfills at the ‘Nikola Tesla A’ thermal power plant; (b) fly ash from silos in the ‘Nikola Tesla B’ thermal power plant; (c) an ash-slag mixture from landfills at the ‘Kostolac A’ and ‘Kostolac B’ thermal power plants and ‘Srednje kostolačko ostrvo’ landfill; (d) fly ash from the ‘Kostolac’ thermal power plant. The following physical and mechanical properties of ash and mixtures were investigated: grain size distribution, Atterberg limits, specific gravity, moisture-density relationship, shear strength parameters in terms of effective stresses, California Bearing Ratio (CBR), and deformation parameters. The paper presents the results of laboratory tests of the materials with and without binders, and based on the laboratory results and previous research, the paper presents possibilities of using fly ash and slag for the construction of railway substructure in the planned construction and reconstruction of railway network in Serbia. The obtained results indicate that tested fly ash and ash-slag mixture have met the technical requirements and that they have the potential to be used in railway substructure.


2020 ◽  
Vol 6 (2) ◽  
pp. 73
Author(s):  
Demet Demir Şahin ◽  
Mustafa Çullu ◽  
Hasan Eker

Too much CO2 is released during cement production. In many researches, the use of natural or recycled compounds plays an important role in the cement composition. The use of these components contributes both to reducing the amount of waste and to protecting the environment in nature. It is possible to produce an environmentally friendly concrete, thanks to its being a fly ash thermal power plant waste and its use as mineral additive in terms of its composition. In this study, it is aimed to produce impermeable concretes with the use of C type fly ash as substitutes for cement in concrete composition in substitution rates of 10 %, 30 % and 50 %. In order to reduce the permeability of concrete in this direction, as a result of grinding the fly ash in the ball mill for 0, 10, 20, 30, 45 and 60 minutes, concrete samples were prepared with and without admixture (Reference). Capillarity test was performed to determine the permeability at the end of cure periods of 28 and 90 days on concrete samples. According to the results obtained at the end of 28 days, the best impermeability was achieved in the mixture with 50 % fly ash replacement and 60 minutes grinding time. In 90 days, the best impermeability was obtained in the mixture with 30 % fly ash replacement and 0 minutes of grinding time. As a result, it was seen that permeability decreased with increasing thinness and substitution rate of fly ash in concrete composition.


2013 ◽  
Vol 12 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Firuta Goga ◽  
Roxana Dudric ◽  
Calin Cormos ◽  
Florica Imre ◽  
Liliana Bizo ◽  
...  

2022 ◽  
Vol 1 (15) ◽  
pp. 171-174
Author(s):  
Andrey Savenkov ◽  
Viktorya Kolomiets

The article considers a technical solution for the introduction of pozzolan additives into the cement after grinding clinker. Such additives are the fly ash of the CHP and ash from the ash dump. The use of ash in the composition of cement reduces its cost and energy intensity of its production


Sign in / Sign up

Export Citation Format

Share Document