scholarly journals PERANCANGAN HRSG (HEAT RECOVERY STEAM GENERATOR) SEBAGAI PEMANAS REFRIGRANT R-134a PADA SIKLUS ORGANIC RANKINE CYCLE

2020 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
D. L. Zariatin ◽  
I. G.E. Lesmana ◽  
R. C. Hartantrie ◽  
Aditya Nugroho

Udara buang proses pirolisis masih menyimpan energi panas yang cukup tinggi dengan temperatur mencapai 800°C sehingga dapat dimanfaatkan sebagai media untuk merubah fase Refrigerant R-134a dari fase cair menjadi gas. Refrigerant R-134a yang sudah berubah menjadi gas digunakan untuk memutar turbin sebagai penggerak generator sehingga dapat menghasilkan aliran listrik dalam siklus Organic Rankine Cycle  (ORC). Refrigrant R-134a tidak menyerap panas dari proses pirolisis secara langsung. Panas dari pirolisis diserap melalui siklus thermal oil kemudian digunakan untuk mengubah fasa R-134a pada Heat Recovery Steam Generator (HRSG). Desain HRSG pada penelitian ini adalah tipe sistem Heat Exchanger shell  and tube. Dimana thermal oil yang memiliki suhu panas mengalir dalam shell dan refrigerant R-134a yang memiliki suhu dingin mengalir dalam Tube. Pertukaran panas terjadi ketika Refrigerant R-134a masuk ke dalam tube dan thermal oil masuk ke dalam shell. Dalam perancangan HRSG ini digunakan tiga variasi tekanan yaitu 8 bars, 10 bar, dan 12 bar. Data suhu, tekanan, diameter tube, dan mass flow rate di-input pada software HTRI Xchanger suite kemudian diproses oleh software tersebut sehingga menghasilkan output berupa laju perpindahan panas. Nilai laju perpindahan panas berturut turut sebesar turut 2,084 kJ/s, 2,622 kJ/s, dan 3,02kJ/s. Sehingga dapat disimpulkan hasil yang paling optimal berada pada tekanan 12 bar dengan nilai laju perpindahan panas sebesar 3,02 kJ/s Kata kunci: shell and tube HRSG, HTRI Xchanger suite, Organic Rankine Cycle

2018 ◽  
Vol 22 (Suppl. 3) ◽  
pp. 855-866
Author(s):  
Anil Erdogan ◽  
Ozgur Colpan

In this study, thermal models for subcritical and supercritical geothermal powered organic Rankine cycles are developed to compare the performance of these cycle configurations. Both of these models consist of a detailed model for the shell and tube heat exchanger integrating the geothermal and organic Rankine cycles sides and basic thermodynamic models for the rest of the components of the cycle. In the modeling of the heat exchanger, this component was divided into sever?al zones and the outlet conditions of each zone were found applying logarithmic mean temperature difference method. Different Nusselt correlations according to the relevant phase (single, two-phase, and supercritical) were also included in this model. Using the system-level model, the effect of the source temperature on the performances of the heat exchanger and the organic Rankine cycle was assessed. These performance parameters are heat transfer surface area and pressure drop of tube side fluid for the heat exchanger, and electrical and exergetic efficiencies of the integrated organic Rankine cycles system. It was found that 44.12% more net power is generated when the supercritical organic Rankine cycle is used compared to subcritical organic Rankine cycle.


2021 ◽  
Vol 65 (1) ◽  
pp. 93-104
Author(s):  
Onkar Singh ◽  
Gaitry Arora ◽  
Vinod Kumar Sharma

Heliostat-based solar thermal power system consisting of a combination of the Brayton cycle, Rankine cycle, and organic Rankine cycle is a potential option for harnessing solar energy for power generation. Among different options for improving the performance of solarized triple combined cycle the option of introducing intercooling and reheating in the gas turbine cycle and utilizing the waste heat for augmenting the power output needs investigation. Present study considers a solarized triple combined cycle with intercooling and reheating in gas turbines while using the heat rejected in intercooling in heat recovery vapour generator and heat recovery steam generator separately in two different arrangements. A comparison of two distinct cycle arrangements has been carried out based on Ist law and IInd law of thermodynamics with the help of thermodynamic parameters. Results show that triple combined cycle having intercooling heat used in heat recovery vapour generator offers maximum energy efficiency of 63.54% at 8 CPR & 300K ambient temperature and maximum exergetic efficiency of 38.37% at 14 CPR & 300 K. While the use of intercooling heat in heat recovery steam generator offers maximum energy and exergetic efficiency of 64.15% and 39.72% respectively at 16 CPR & 300 K ambient temperature.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2737
Author(s):  
Francesca Ceglia ◽  
Adriano Macaluso ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Laura Vanoli

Improvements in using geothermal sources can be attained through the installation of power plants taking advantage of low and medium enthalpy available in poorly exploited geothermal sites. Geothermal fluids at medium and low temperature could be considered to feed binary cycle power plants using organic fluids for electricity “production” or in cogeneration configuration. The improvement in the use of geothermal aquifers at low-medium enthalpy in small deep sites favours the reduction of drilling well costs, and in addition, it allows the exploitation of local resources in the energy districts. The heat exchanger evaporator enables the thermal heat exchange between the working fluid (which is commonly an organic fluid for an Organic Rankine Cycle) and the geothermal fluid (supplied by the aquifer). Thus, it has to be realised taking into account the thermodynamic proprieties and chemical composition of the geothermal field. The geothermal fluid is typically very aggressive, and it leads to the corrosion of steel traditionally used in the heat exchangers. This paper analyses the possibility of using plastic material in the constructions of the evaporator installed in an Organic Rankine Cycle plant in order to overcome the problems of corrosion and the increase of heat exchanger thermal resistance due to the fouling effect. A comparison among heat exchangers made of commonly used materials, such as carbon, steel, and titanium, with alternative polymeric materials has been carried out. This analysis has been built in a mathematical approach using the correlation referred to in the literature about heat transfer in single-phase and two-phase fluids in a tube and/or in the shell side. The outcomes provide the heat transfer area for the shell and tube heat exchanger with a fixed thermal power size. The results have demonstrated that the plastic evaporator shows an increase of 47.0% of the heat transfer area but an economic installation cost saving of 48.0% over the titanium evaporator.


2012 ◽  
Vol 33 (3) ◽  
pp. 48-60
Author(s):  
Aleksandra Borsukiewicz-Gozdur

Abstract In the paper presented is an idea of organic Rankine cycle (ORC) operating with supercritical parameters and so called dry fluids. Discussed is one of the methods of improving the effectiveness of operation of supercritical cycle by application of internal regeneration of heat through the use of additional heat exchanger. The main objective of internal regenerator is to recover heat from the vapour leaving the turbine and its transfer to the liquid phase of working fluid after the circulation pump. In effect of application of the regenerative heat exchanger it is possible to obtain improved effectiveness of operation of the power plant, however, only in the case when the ORC plant is supplied from the so called sealed heat source. In the present paper presented is the discussion of heat sources and on the base of the case study of two heat sources, namely the rate of heat of thermal oil from the boiler and the rate of heat of hot air from the cooler of the clinkier from the cement production line having the same initial temperature of 260 oC, presented is the influence of the heat source on the justification of application of internal regeneration. In the paper presented are the calculations for the supercritical ORC power plant with R365mfc as a working fluid, accomplished has been exergy changes and exergy efficiency analysis with the view to select the most appropriate parameters of operation of the power plant for given parameters of the heat source.


2015 ◽  
Vol 77 (27) ◽  
Author(s):  
Omid Rowshanaie ◽  
Saari Mustapha ◽  
Kamarul Arifin Ahmad ◽  
Hooman Rowshanaie

A simulation model of Organic Rankine Cycle (ORC) was developed with HYSYS software driven by R245fa, with NOVEC7000 and R141b as working fluids and Fluegas of boilers as a heat source of shell and tube Heat Exchanger to generate large scale electricity. The initial working condition was in subcooled liquid and steady state condition. R141b was found to generate the highest electricity power increment in specific mass flow rates and inlet pressures of Expander because of approaching its critical temperature to inlet Fluegas temperature. Howeever, in terms of economic considerations and cost of shell and tube Heat Exchanger that related to total heat transfer capacity, NOVEC7000 is the optimum selection. Furthermore, R245fa has the highest total effiiciency of ORC compared with other working fluids in this study.


Author(s):  
Raphael Duarte ◽  
Sandro Ferreira ◽  
Rafael Barbosa

The heavy duty gas turbines evolution led to higher combined cycle efficiencies. Thus, more complex heat recovery steam generators were developed in order to maximize the use of that energy potential. Therefore, computational models capable to predict the operational conditions of the equipment may be needed in order to analyze the system behavior for different situations. This article describes a computational model able to simulate the off-design behavior of a heat recovery steam generator (HRSG) operating in a combined cycle power plant. The model was developed so that it can be used in both model-based diagnostics systems and performance evaluation systems. Each heat exchanger inside the HRSG was designed individually and arranged according to the analyzed equipment. The computer code’s architecture was built in such a way that it can be easily changed, allowing the analysis of other HRSG’s configurations with simple structural changes, given the program’s modularity. In order to deal with the lack of details of the power plant equipment, which means not enough geometrical information of each heat exchanger, a generic algorithm tool was used to calibrate the heat exchangers models using only the measured data of the power plant SCADA. The developed program was validated against operational data from a real plant and showed satisfactory results, confirming the robustness of this model.


Sign in / Sign up

Export Citation Format

Share Document