scholarly journals Breaking the aristotype: featurisation of polyhedral distortions in perovskite crystals

Author(s):  
Kazuki Morita ◽  
Daniel Davies ◽  
Keith Butler ◽  
Aron Walsh

While traditional crystallographic representations of structure play an important role in materials science, they are unsuitable for efficient machine learning. A range of effective numerical descriptors have been developed for molecular and crystal structures. We are interested in a special case, where distortions emerge relative to an ideal high-symmetry parent structure. We demonstrate that irreducible representations form an efficient basis for the featurisation of polyhedral deformations with respect to such an aristotype. Applied to dataset of 552 octahedra in ABO3 perovskite-type materials, we use unsupervised machine learning with irreducible representation descriptors to identify four distinct classes of behaviour, associated with predominately corner, edge, face, and mixed connectivity between neighbouring octahedral units. Through this analysis, we identify SrCrO3 as a material with tuneable multiferroic behaviour. We further show, through supervised machine learning, that thermally activated structural distortions of CsPbI3 are well described by this approach.

2021 ◽  
Author(s):  
Kazuki Morita ◽  
Daniel Davies ◽  
Keith Butler ◽  
Aron Walsh

While traditional crystallographic representations of structure play an important role in materials science, they are unsuitable for efficient machine learning. A range of effective numerical descriptors have been developed for molecular and crystal structures. We are interested in a special case, where distortions emerge relative to an ideal high-symmetry parent structure. We demonstrate that irreducible representations form an efficient basis for the featurisation of polyhedral deformations with respect to such an aristotype. Applied to dataset of 552 octahedra in ABO3 perovskite-type materials, we use unsupervised machine learning with irreducible representation descriptors to identify four distinct classes of behaviour, associated with predominately corner, edge, face, and mixed connectivity between neighbouring octahedral units. Through this analysis, we identify SrCrO3 as a material with tuneable multiferroic behaviour. We further show, through supervised machine learning, that thermally activated structural distortions of CsPbI3 are well described by this approach.


2014 ◽  
Author(s):  
Adam Hughes ◽  
Zhaowen Liu ◽  
Maryam Raftari ◽  
Mark E Reeves

A persistent challenge in materials science is the characterization of a large ensemble of heterogeneous nanostructures in a set of images. This often leads to practices such as manual particle counting, and sampling bias of a favorable region of the “best” image. Herein, we present the open-source software, imaging criteria and workflow necessary to fully characterize an ensemble of SEM nanoparticle images. Such characterization is critical to nanoparticle biosensors, whose performance and characteristics are determined by the distribution of the underlying nanoparticle film. We utilize novel artificial SEM images to objectively compare commonly-found image processing methods through each stage of the workflow: acquistion, preprocessing, segmentation, labeling and object classification. Using the semi- supervised machine learning application, Ilastik, we demonstrate the decomposition of a nanoparticle image into particle subtypes relevant to our application: singles, dimers, flat aggregates and piles. We outline a workflow for characterizing and classifying nanoscale features on low-magnification images with thousands of nanoparticles. This work is accompanied by a repository of supplementary materials, including videos, a bank of real and artificial SEM images, and ten IPython Notebook tutorials to reproduce and extend the presented results.


Author(s):  
Adam S Hughes ◽  
Zhaowen Liu ◽  
Maryam Raftari ◽  
Marke M. E. Reeves

A persistent challenge in materials science is the characterization of a large ensemble of heterogeneous nanostructures in a set of images. This often leads to practices such as manual particle counting, and sampling bias of a favorable region of the “best” image. Herein, we present the open-source software, imaging criteria and workflow necessary to fully characterize an ensemble of SEM nanoparticle images. Such characterization is critical to nanoparticle biosensors, whose performance and characteristics are determined by the distribution of the underlying nanoparticle film. We utilize novel artificial SEM images to objectively compare commonly-found image processing methods through each stage of the workflow: acquistion, preprocessing, segmentation, labeling and object classification. Using the semi- supervised machine learning application, Ilastik, we demonstrate the decomposition of a nanoparticle image into particle subtypes relevant to our application: singles, dimers, flat aggregates and piles. We outline a workflow for characterizing and classifying nanoscale features on low-magnification images with thousands of nanoparticles. This work is accompanied by a repository of supplementary materials, including videos, a bank of real and artificial SEM images, and ten IPython Notebook tutorials to reproduce and extend the presented results.


Author(s):  
Adam Hughes ◽  
Zhaowen Liu ◽  
Maryam Raftari ◽  
Mark E Reeves

A persistent challenge in materials science is the characterization of a large ensemble of heterogeneous nanostructures in a set of images. This often leads to practices such as manual particle counting, and sampling bias of a favorable region of the “best” image. Herein, we present the open-source software, imaging criteria and workflow necessary to fully characterize an ensemble of SEM nanoparticle images. Such characterization is critical to nanoparticle biosensors, whose performance and characteristics are determined by the distribution of the underlying nanoparticle film. We utilize novel artificial SEM images to objectively compare commonly-found image processing methods through each stage of the workflow: acquistion, preprocessing, segmentation, labeling and object classification. Using the semi- supervised machine learning application, Ilastik, we demonstrate the decomposition of a nanoparticle image into particle subtypes relevant to our application: singles, dimers, flat aggregates and piles. We outline a workflow for characterizing and classifying nanoscale features on low-magnification images with thousands of nanoparticles. This work is accompanied by a repository of supplementary materials, including videos, a bank of real and artificial SEM images, and ten IPython Notebook tutorials to reproduce and extend the presented results.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2020 ◽  
Author(s):  
Jin Soo Lim ◽  
Jonathan Vandermause ◽  
Matthijs A. van Spronsen ◽  
Albert Musaelian ◽  
Christopher R. O’Connor ◽  
...  

Restructuring of interface plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different composition and morphology at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of the long-timescale restructuring of Pd deposited on Ag, using microscopy, spectroscopy, and novel simulation methods. Encapsulation of Pd by Ag always precedes layer-by-layer dissolution of Pd, resulting in significant Ag migration out of the surface and extensive vacancy pits. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. The underlying mechanisms are uncovered by performing fast and large-scale machine-learning molecular dynamics, followed by our newly developed method for complete characterization of atomic surface restructuring events. Our approach is broadly applicable to other multimetallic systems of interest and enables the previously impractical mechanistic investigation of restructuring dynamics.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document