scholarly journals Classical Ab Initio Molecular Dynamics Run at an Elevated Temperature is Not a Good Model for the Nuclear Quantum Effects in Water at Ambient Temperature

Author(s):  
Chenghan Li ◽  
Francesco Paesani ◽  
Gregory A. Voth

It is a common practice in ab initio molecular dynamics (AIMD) simulations of water to use an elevated temperature to overcome the over-structuring and slow diffusion predicted by most current density functional theory (DFT) models. The simulation results obtained in this distinct thermodynamic ensemble are then compared with experimental data at ambient temperature based on the rationale that a higher temperature effectively recovers nuclear quantum effects (NQEs) that are missing in the classical AIMD simulations. In this work, we systematically examine the foundation of this assumption for several DFT models as well as for the many-body MB-pol model. We find for the cases studied that a higher temperature does not correctly mimic NQEs at room temperature, which is especially manifest in significantly different three-body correlations as well as dynamics. In many of these cases, the effects of NQEs are exactly the opposite of the effects of carrying out the simulations at an elevated temperature.

2022 ◽  
Author(s):  
Chenghan Li ◽  
Francesco Paesani ◽  
Gregory A. Voth

It is a common practice in ab initio molecular dynamics (AIMD) simulations of water to use an elevated temperature to overcome the over-structuring and slow diffusion predicted by most current density functional theory (DFT) models. The simulation results obtained in this distinct thermodynamic state are then compared with experimental data at ambient temperature based on the rationale that a higher temperature effectively recovers nuclear quantum effects (NQEs) that are missing in the classical AIMD simulations. In this work, we systematically examine the foundation of this assumption for several DFT models as well as for the many-body MB-pol model. We find for the cases studied that a higher temperature does not correctly mimic NQEs at room temperature, which is especially manifest in significantly different three-molecule correlations as well as hydrogen bond dynamics. In many of these cases, the effects of NQEs are the opposite of the effects of carrying out the simulations at an elevated temperature.


2021 ◽  
Vol 22 (10) ◽  
pp. 5220
Author(s):  
Jarosław J. Panek ◽  
Joanna Zasada ◽  
Bartłomiej M. Szyja ◽  
Beata Kizior ◽  
Aneta Jezierska

The O-H...N and O-H...O hydrogen bonds were investigated in 10-hydroxybenzo[h]quinoline (HBQ) and benzo[h]quinoline-2-methylresorcinol complex in vacuo, solvent and crystalline phases. The chosen systems contain analogous donor and acceptor moieties but differently coupled (intra- versus intermolecularly). Car–Parrinello molecular dynamics (CPMD) was employed to shed light onto principle components of interactions responsible for the self-assembly. It was applied to study the dynamics of the hydrogen bonds and vibrational features as well as to provide initial geometries for incorporation of quantum effects and electronic structure studies. The vibrational features were revealed using Fourier transformation of the autocorrelation function of atomic velocity and by inclusion of nuclear quantum effects on the O-H stretching solving vibrational Schrödinger equation a posteriori. The potential of mean force (Pmf) was computed for the whole trajectory to derive the probability density distribution and for the O-H stretching mode from the proton vibrational eigenfunctions and eigenvalues incorporating statistical sampling and nuclear quantum effects. The electronic structure changes of the benzo[h]quinoline-2-methylresorcinol dimer and trimers were studied based on Constrained Density Functional Theory (CDFT) whereas the Electron Localization Function (ELF) method was applied for all systems. It was found that the bridged proton is localized on the donor side in both investigated systems in vacuo. The crystalline phase simulations indicated bridged proton-sharing and transfer events in HBQ. These effects are even more pronounced when nuclear quantization is taken into account, and the quantized Pmf allows the proton to sample the acceptor area more efficiently. The CDFT indicated the charge depletion at the bridged proton for the analyzed dimer and trimers in solvent. The ELF analysis showed the presence of the isolated proton (a signature of the strongest hydrogen bonds) only in some parts of the HBQ crystal simulation. The collected data underline the importance of the intramolecular coupling between the donor and acceptor moieties.


Author(s):  
Alberto Rodríguez-Fernández ◽  
Laurent Bonnet ◽  
Pascal Larrégaray ◽  
Ricardo Díez Muiño

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Paquet ◽  
Herna L. Viktor

Ab initio molecular dynamics is an irreplaceable technique for the realistic simulation of complex molecular systems and processes from first principles. This paper proposes a comprehensive and self-contained review of ab initio molecular dynamics from a computational perspective and from first principles. Quantum mechanics is presented from a molecular dynamics perspective. Various approximations and formulations are proposed, including the Ehrenfest, Born–Oppenheimer, and Hartree–Fock molecular dynamics. Subsequently, the Kohn–Sham formulation of molecular dynamics is introduced as well as the afferent concept of density functional. As a result, Car–Parrinello molecular dynamics is discussed, together with its extension to isothermal and isobaric processes. Car–Parrinello molecular dynamics is then reformulated in terms of path integrals. Finally, some implementation issues are analysed, namely, the pseudopotential, the orbital functional basis, and hybrid molecular dynamics.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3434
Author(s):  
Khagendra Baral ◽  
Puja Adhikari ◽  
Bahaa Jawad ◽  
Rudolf Podgornik ◽  
Wai-Yim Ching

The structure and properties of the arginine-glycine-aspartate (RGD) sequence of the 1FUV peptide at 0 K and body temperature (310 K) are systematically investigated in a dry and aqueous environment using more accurate ab initio molecular dynamics and density functional theory calculations. The fundamental properties, such as electronic structure, interatomic bonding, partial charge distribution, and dielectric response function at 0 and 310 K are analyzed, comparing them in dry and solvated models. These accurate microscopic parameters determined from highly reliable quantum mechanical calculations are useful to define the range and strength of complex molecular interactions occurring between the RGD peptide and the integrin receptor. The in-depth bonding picture analyzed using a novel quantum mechanical metric, the total bond order (TBO), quantifies the role played by hydrogen bonds in the internal cohesion of the simulated structures. The TBO at 310 K decreases in the dry model but increases in the solvated model. These differences are small but extremely important in the context of conditions prevalent in the human body and relevant for health issues. Our results provide a new level of understanding of the structure and properties of the 1FUV peptide and help in advancing the study of RGD containing other peptides.


2019 ◽  
Author(s):  
Rocco Peter Fornari ◽  
Piotr de Silva

Directly linked polyanthraquinones have relatively large electronic couplings between charge-localized states despite near-orthogonality of the monomer units. By using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, we investigate this unusual coupling mechanism and show that this is due to strong lone pair-pi interactions, which are maximized around orthogonal conformations. We find that such materials are largely resilient to dynamic disorder and are promising for organic electronics applications.


Sign in / Sign up

Export Citation Format

Share Document