scholarly journals Ballistic ΔS=2 Intersystem Crossing in a Cobalt Cubane Following Ligand-Field Excitation Probed by Extreme Ultraviolet Spectroscopy

Author(s):  
Yusef Shari'ati ◽  
Josh Vura-Weis

Femtosecond M2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to probe the excited-state dynamics of the cobalt cubane [CoIII4O4](OAc)4(py)4 (OAc = acetate, py = pyridine), a model for water oxidation catalysts. After ligand-field excitation, intersystem crossing to a metal-centered quintet occurs in 38 fs. 30% of the hot quintet undergoes ballistic back-ISC directly to the singlet ground stat, with the remainder relaxing to a long-lived triplet.

Author(s):  
Yusef Shari'ati ◽  
Josh Vura-Weis

Femtosecond M2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to probe the excited-state dynamics of the cobalt cubane [CoIII4O4](OAc)4(py)4 (OAc = acetate, py = pyridine), a model for water...


2019 ◽  
Author(s):  
Elizabeth S. Ryland ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Nickel porphyrins have been extenstively studied as photosensitizers due to their long-lived metal-centered excited states. The multiplicity of the (d,d) state, and/or the rate of intersystem crossing between singlet and triplet metal-centered states, has remained uncertain due to the spin-insensitivity of many spectral probes. In this work, we directly probe the metal 3d shell occupation of nickel(II) octaethylporphyrin (NiOEP) using femtosecond M2,3-edge X-ray absorption near-edge structure (XANES). A tabletop high-harmonic source is used to perform 400 nm pump, extreme-ultraviolet probe transient absorption spectroscopy with ~100 fs time resolution. Photoexcitation produces a (π,π*) state that evolves with a time constant of 48 fs to a vibrationally hot metal-centered triplet 3(d,d) excited state with a lifetime of 595 ps. The spin sensitivity of M-edge XANES allows the 3(d,d) state to be distinguished from a potential 1(d,d) state, as shown by charge transfer multiplet simulations and comparison to triplet nickel(II) oxide. Vibrational cooling of the hot triplet state occurs over tens of ps, with minimal change in the electronic structure of the nickel(II) center. No evidence of an LMCT or MLCT intermediate state is seen within the time resolution of the instrument, suggesting that if such a state exists in NiOEP it depopulates in <25 fs. Finally, this study demonstrates the ability of table high-harmonic XUV sources to measure excited-state spin transitions in molecular transition metal complexes.


2019 ◽  
Author(s):  
Elizabeth S. Ryland ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Nickel porphyrins have been extenstively studied as photosensitizers due to their long-lived metal-centered excited states. The multiplicity of the (d,d) state, and/or the rate of intersystem crossing between singlet and triplet metal-centered states, has remained uncertain due to the spin-insensitivity of many spectral probes. In this work, we directly probe the metal 3d shell occupation of nickel(II) octaethylporphyrin (NiOEP) using femtosecond M2,3-edge X-ray absorption near-edge structure (XANES). A tabletop high-harmonic source is used to perform 400 nm pump, extreme-ultraviolet probe transient absorption spectroscopy with ~100 fs time resolution. Photoexcitation produces a (π,π*) state that evolves with a time constant of 48 fs to a vibrationally hot metal-centered triplet 3(d,d) excited state with a lifetime of 595 ps. The spin sensitivity of M-edge XANES allows the 3(d,d) state to be distinguished from a potential 1(d,d) state, as shown by charge transfer multiplet simulations and comparison to triplet nickel(II) oxide. Vibrational cooling of the hot triplet state occurs over tens of ps, with minimal change in the electronic structure of the nickel(II) center. No evidence of an LMCT or MLCT intermediate state is seen within the time resolution of the instrument, suggesting that if such a state exists in NiOEP it depopulates in <25 fs. Finally, this study demonstrates the ability of table high-harmonic XUV sources to measure excited-state spin transitions in molecular transition metal complexes.


2019 ◽  
Vol 10 (18) ◽  
pp. 5484-5489 ◽  
Author(s):  
Nicholas A. Miller ◽  
Lindsay B. Michocki ◽  
Roberto Alonso-Mori ◽  
Alexander Britz ◽  
Aniruddha Deb ◽  
...  

2019 ◽  
Vol 205 ◽  
pp. 05014 ◽  
Author(s):  
Roseanne J. Sension ◽  
Nicholas A. Miller ◽  
Aniruddha Deb ◽  
Roberto Alonso-Mori ◽  
James M. Glownia ◽  
...  

Polarized time-resolved X-ray absorption near edge structure (XANES) is used to characterize the sequential ballistic excited state dynamics of two B12 vitamers: cyanocobalamin and adenosylcobalamin. Excitation at 550 nm and 365 nm is used to resolve axial and equatorial contributions to the excited state dynamics.


2019 ◽  
Author(s):  
Ryan Ash ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Cobalt complexes that undergo charge-transfer induced spin-transitions (CTIST) or valence tautomerism (VT) from low spin (LS) Co(III) to high spin (HS) Co(II) are potential candidates for magneto-optical switches. We use M-edge XANES spectroscopy with 40 fs time resolution to measure the excited-state dynamics of Co(III)(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin Co(II) ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin Co(II) in 67 fs. Vibrational cooling from this hot HS Co(II) state competes on the hundreds-of-fs timescale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS Co(II) state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M-edge XANES to measure ultrafast photophysics of molecular Co complexes.<br><br><br>


2019 ◽  
Author(s):  
Kaili Zhang ◽  
Ryan Ash ◽  
Gregory S Girolami ◽  
Josh Vura-Weis

<p>Fe(II) coordination complexes are promising alternatives to Ru(II) and Ir(III) chromophores for photoredox chemistry and solar energy conversion, but rapid deactivation of the initial metal-to-ligand charge transfer (MLCT) state to low-lying (d,d) states limits their performance. Relaxation to a <sup>5</sup>T<sub>2g</sub> state is postulated to occur via a metal-centered triplet state, but this mechanism remains controversial. We use femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to measure the excited-state relaxation of Fe(phen)<sub>3</sub><sup>2+</sup> and conclusively identify a <sup>3</sup>T intermediate that forms in 170 fs and decays to a vibrationally hot <sup>5</sup>T<sub>2g</sub> state in 40 fs. The shape of this M<sub>2,3</sub>-edge X-ray absorption near edge structure (XANES) spectrum is sensitive to the electronic structure of the metal center, and the high spin sensitivity, fast time resolution, and tabletop convenience of XUV transient absorption make it a powerful new tool for measuring the complex photophysics of transition metal complexes.</p>


Sign in / Sign up

Export Citation Format

Share Document