scholarly journals A Generalized Kinetic Model for Compartmentalization of Organometallic Catalysis

Author(s):  
Brandon Jolly ◽  
Chong Liu

Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, a scarcity of theoretical framework towards confined organometallic chemistry impedes a broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency (𝛾), and subsequently increase catalytic turnover frequency (𝑇𝑂𝐹). The key parameter in the model is the volumetric diffusive conductance (𝐹 ) that describes catalysts’ diffusion propensity across a compartment’s boundary. Optimal values of 𝐹 for a specific organometallic chemistry are needed to achieve maximal values of 𝛾 and 𝑇𝑂𝐹. Our model suggests a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalysis. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance.

2021 ◽  
Author(s):  
Brandon Jolly ◽  
Nathalie Co ◽  
Ashton Davis ◽  
Paula Diaconescu ◽  
Chong Liu

Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, a scarcity of theoretical framework towards confined organometallic chemistry impedes a broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency (γ), and subsequently increase catalytic turnover frequency (TOF). The key parameter in the model is the volumetric diffusive conductance (F_V) that describes catalysts’ diffusion propensity across a compartment’s boundary. Optimal values of F_V for a specific organometallic chemistry are needed to achieve maximal values of γ and TOF. As illustrated in specific reaction examples, our model suggests that a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalytic cycle. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance. The conclusions from this work are generally applicable to other catalytic systems that need proper design guidance in confinement and compartmentalization.


2022 ◽  
Author(s):  
Brandon J Jolly ◽  
Nathalie H Co ◽  
Ashton R Davis ◽  
Paula L. Diaconescu ◽  
Chong Liu

Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic...


2020 ◽  
Vol 74 (11) ◽  
pp. 866-870
Author(s):  
Lewis C. H. Maddock ◽  
Alan Kennedy ◽  
Eva Hevia

While fluoroaryl fragments are ubiquitous in many pharmaceuticals, the deprotonation of fluoroarenes using organolithium bases constitutes an important challenge in polar organometallic chemistry. This has been widely attributed to the low stability of the in situ generated aryl lithium intermediates that even at –78 °C can undergo unwanted side reactions. Herein, pairing lithium amide LiHMDS (HMDS = N{SiMe3}2) with FeII(HMDS)2 enables the selective deprotonation at room temperature of pentafluorobenzene and 1,3,5-trifluorobenzene via the mixed-metal base [(dioxane)LiFe(HMDS)3] (1) (dioxane = 1,4-dioxane). Structural elucidation of the organometallic intermediates [(dioxane)Li(HMDS)2Fe(ArF)] (ArF = C6F5, 2; 1,3,5-F3-C6H2, 3) prior electrophilic interception demonstrates that these deprotonations are actually ferrations, with Fe occupying the position previously filled by a hydrogen atom. Notwithstanding, the presence of lithium is essential for the reactions to take place as Fe II (HMDS)2 on its own is completely inert towards the metallation of these substrates. Interestingly 2 and 3 are thermally stable and they do not undergo benzyne formation via LiF elimination.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24097-24102 ◽  
Author(s):  
Betül Çelik ◽  
Yunus Yıldız ◽  
Hakan Sert ◽  
Esma Erken ◽  
Yagmur Koşkun ◽  
...  

Monodispersed PdCo@PVP NPs showed record catalytic activity, giving the best catalytic performance yet with a very high turnover frequency.


BioTechniques ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 175-182 ◽  
Author(s):  
Xiaofang Jin ◽  
Jessica Rose Newton ◽  
Stephen Montgomery-Smith ◽  
George P. Smith

2020 ◽  
Vol 1 (6) ◽  
pp. 1952-1962
Author(s):  
Samikannu Prabu ◽  
Kung-Yuh Chiang

GO and rGO supported metal NPs exhibited excellent catalytic performance for AB hydrolysis. It also provided a high turnover frequency (TOF) at 25 °C.


1991 ◽  
Vol 24 (7) ◽  
pp. 1641-1647 ◽  
Author(s):  
Y. Yong Tan ◽  
Gert O. R. Alberda van Ekenstein

2019 ◽  
Vol 20 (19) ◽  
pp. 4911 ◽  
Author(s):  
Xie ◽  
Guo ◽  
Chen

A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.


Sign in / Sign up

Export Citation Format

Share Document