scholarly journals A Generalized Kinetic Model for Coupling between Stepping and ATP Hydrolysis of Kinesin Molecular Motors

2019 ◽  
Vol 20 (19) ◽  
pp. 4911 ◽  
Author(s):  
Xie ◽  
Guo ◽  
Chen

A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


1998 ◽  
Vol 9 (12) ◽  
pp. 3533-3545 ◽  
Author(s):  
Amie J. McClellan ◽  
James B. Endres ◽  
Joseph P. Vogel ◽  
Debra Palazzi ◽  
Mark D. Rose ◽  
...  

The posttranslational translocation of proteins across the endoplasmic reticulum (ER) membrane in yeast requires ATP hydrolysis and the action of hsc70s (DnaK homologues) and DnaJ homologues in both the cytosol and ER lumen. Although the cytosolic hsc70 (Ssa1p) and the ER lumenal hsc70 (BiP) are homologous, they cannot substitute for one another, possibly because they interact with specific DnaJ homologues on each side of the ER membrane. To investigate this possibility, we purified Ssa1p, BiP, Ydj1p (a cytosolic DnaJ homologue), and a GST–63Jp fusion protein containing the lumenal DnaJ region of Sec63p. We observed that BiP, but not Ssa1p, is able to associate with GST–63Jp and that Ydj1p stimulates the ATPase activity of Ssa1p up to 10-fold but increases the ATPase activity of BiP by <2-fold. In addition, Ydj1p and ATP trigger the release of an unfolded polypeptide from Ssa1p but not from BiP. To understand further how BiP drives protein translocation, we purified four dominant lethal mutants of BiP. We discovered that each mutant is defective for ATP hydrolysis, fails to undergo an ATP-dependent conformational change, and cannot interact with GST–63Jp. Measurements of protein translocation into reconstituted proteoliposomes indicate that the mutants inhibit translocation even in the presence of wild-type BiP. We conclude that a conformation- and ATP-dependent interaction of BiP with the J domain of Sec63p is essential for protein translocation and that the specificity of hsc70 action is dictated by their DnaJ partners.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 287 ◽  
Author(s):  
Si-Kao Guo ◽  
Wei-Chi Wang ◽  
Peng-Ye Wang ◽  
Ping Xie

Kinesin-1, kinesin-2 and kinesin-5 are three families of a superfamily of motor proteins; which can walk processively on microtubule filaments by hydrolyzing ATP. It was experimentally shown that while the three kinesin dimers show similar feature on the force dependence of velocity, they show rather different features on the force dependence of run length. However, why the three families of kinesins show these rather different features is unclear. Here, we computationally studied the movement dynamics of the three dimers based on our proposed model. The simulated results reproduce well the available experimental data on the force dependence of velocity and run length. Moreover, the simulated results on the velocity and run length for the three dimers with altered neck linker lengths are also in quantitative agreement with the available experimental data. The studies indicate that the three families of kinesins show much similar movement mechanism and the rather different features on the force dependence of run length arise mainly from the difference in rate constants of the ATPase activity and neck linker docking. Additionally, the asymmetric (limping) movement dynamics of the three families of homodimers with and without altered neck linker lengths are studied, providing predicted results.


2010 ◽  
Vol 7 (suppl_3) ◽  
Author(s):  
Sergey V. Mikhailenko ◽  
Yusuke Oguchi ◽  
Shin'ichi Ishiwata

In cells, ATP (adenosine triphosphate)-driven motor proteins, both cytoskeletal and nucleic acid-based, operate on their corresponding ‘tracks’, that is, actin, microtubules or nucleic acids, by converting the chemical energy of ATP hydrolysis into mechanical work. During each mechanochemical cycle, a motor proceeds via several nucleotide states, characterized by different affinities for the ‘track’ filament and different nucleotide (ATP or ADP) binding kinetics, which is crucial for a motor to efficiently perform its cellular functions. The measurements of the rupture force between the motor and the track by applying external loads to the individual motor–substrate bonds in various nucleotide states have proved to be an important tool to obtain valuable insights into the mechanism of the motors' performance. We review the application of this technique to various linear molecular motors, both processive and non-processive, giving special attention to the importance of the experimental geometry.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Johan OL Andreasson ◽  
Bojan Milic ◽  
Geng-Yuan Chen ◽  
Nicholas R Guydosh ◽  
William O Hancock ◽  
...  

Kinesin-1 is a dimeric motor that transports cargo along microtubules, taking 8.2-nm steps in a hand-over-hand fashion. The ATP hydrolysis cycles of its two heads are maintained out of phase by a series of gating mechanisms, which lead to processive runs averaging ∼1 μm. A key structural element for inter-head coordination is the neck linker (NL), which connects the heads to the stalk. To examine the role of the NL in regulating stepping, we investigated NL mutants of various lengths using single-molecule optical trapping and bulk fluorescence approaches in the context of a general framework for gating. Our results show that, although inter-head tension enhances motor velocity, it is crucial neither for inter-head coordination nor for rapid rear-head release. Furthermore, cysteine-light mutants do not produce wild-type motility under load. We conclude that kinesin-1 is primarily front-head gated, and that NL length is tuned to enhance unidirectional processivity and velocity.


2011 ◽  
Vol 22 (21) ◽  
pp. 3936-3939 ◽  
Author(s):  
James A. Spudich

A mere forty years ago it was unclear what motor molecules exist in cells that could be responsible for the variety of nonmuscle cell movements, including the “saltatory cytoplasmic particle movements” apparent by light microscopy. One wondered whether nonmuscle cells might have a myosin-like molecule, well known to investigators of muscle. Now we know that there are more than a hundred different molecular motors in eukaryotic cells that drive numerous biological processes and organize the cell's dynamic city plan. Furthermore, in vitro motility assays, taken to the single-molecule level using techniques of physics, have allowed detailed characterization of the processes by which motor molecules transduce the chemical energy of ATP hydrolysis into mechanical movement. Molecular motor research is now at an exciting threshold of being able to enter into the realm of clinical applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changwon Kim ◽  
Min Ju Shon ◽  
Sung Hyun Kim ◽  
Gee Sung Eun ◽  
Je-Kyung Ryu ◽  
...  

AbstractFueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly.


2021 ◽  
Vol 118 (11) ◽  
pp. e2023955118
Author(s):  
Mihaela-Carmen Unciuleac ◽  
Aviv Meir ◽  
Chaoyou Xue ◽  
Garrett M. Warren ◽  
Eric C. Greene ◽  
...  

Mycobacterial AdnAB is a heterodimeric helicase–nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The N-terminal motor domain of the AdnB subunit hydrolyzes ATP to drive rapid and processive 3′ to 5′ translocation of AdnAB on the tracking DNA strand. ATP hydrolysis is mechanically productive when oscillating protein domain motions synchronized with the ATPase cycle propel the DNA tracking strand forward by a single-nucleotide step, in what is thought to entail a pawl-and-ratchet–like fashion. By gauging the effects of alanine mutations of the 16 amino acids at the AdnB–DNA interface on DNA-dependent ATP hydrolysis, DNA translocation, and DSB resection in ensemble and single-molecule assays, we gained key insights into which DNA contacts couple ATP hydrolysis to motor activity. The results implicate AdnB Trp325, which intercalates into the tracking strand and stacks on a nucleobase, as the singular essential constituent of the ratchet pawl, without which ATP hydrolysis on ssDNA is mechanically futile. Loss of Thr663 and Thr118 contacts with tracking strand phosphates and of His665 with a nucleobase drastically slows the AdnAB motor during DSB resection. Our findings for AdnAB prompt us to analogize its mechanism to that of an automobile clutch.


2018 ◽  
Author(s):  
Sumita Das ◽  
Tomoki P. Terada ◽  
Masaki Sasai

AbstractWhen three cyanobacterial proteins, KaiA, KaiB, and KaiC, are incubated with ATP in vitro, the phosphorylation level of KaiC hexamers shows stable oscillation with approximately 24 h period. In order to understand this KaiABC clockwork, we need to analyze both the macroscopic synchronization of a large number of KaiC hexamers and the microscopic reactions and structural changes in individual KaiC molecules. In the present paper, we explain two coarse-grained theoretical models, the many-molecule (MM) model and the single-molecule (SM) model, to bridge the gap between macroscopic and microscopic understandings. In the simulation results with these models, ATP hydrolysis drives oscillation of individual KaiC hexamers and ATP hydrolysis is necessary for synchronizing oscillations of a large number of KaiC hexamers. Sensitive temperature dependence of the lifetime of the ADP bound state in the CI domain of KaiC hexamers makes the oscillation period temperature insensitive. ATPase activity is correlated to the frequency of phosphorylation oscillation in the single molecule of KaiC hexamer, which should be the origin of the observed ensemble-level correlation between the ATPase activity and the frequency of phosphorylation oscillation. Thus, the simulation results with the MM and SM models suggest that ATP hydrolysis randomly occurring in each CI domain of individual KaiC hexamers is a key process for oscillatory behaviors of the ensemble of many KaiC hexamers.Significance StatementCyanobacterial proteins, KaiA, KaiB, and KaiC, can reconstitute a circadian clock when they are incubated with ATP in vitro. In order to understand this prototypical oscillator, we need to analyze both synchronization of a macroscopically large number of oscillating molecules and microscopic reactions in individual molecules. We introduced two theoretical models to unify macroscopic and microscopic viewpoints. Simulation results suggest that ATP hydrolysis is necessary for synchronization and temperature compensation and that ATPase activity is correlated to the oscillation frequency in individual molecules. Thus, ATP hydrolysis randomly occurring in individual molecules should determine important features of the ensemble-level oscillation.


2021 ◽  
Vol 38 (11) ◽  
pp. 118701
Author(s):  
Yu-Ru Liu ◽  
Peng-Ye Wang ◽  
Wei Li ◽  
Ping Xie

DNA polymerases are an essential class of enzymes or molecular motors that catalyze processive DNA syntheses during DNA replications. A critical issue for DNA polymerases is their molecular mechanism of processive DNA replication. We have proposed a model for chemomechanical coupling of DNA polymerases before, based on which the predicted results have been provided about the dependence of DNA replication velocity upon the external force on Klenow fragment of DNA polymerase I. Here, we performed single molecule measurements of the replication velocity of Klenow fragment under the external force by using magnetic tweezers. The single molecule data verified quantitatively the previous theoretical predictions, which is critical to the chemomechanical coupling mechanism of DNA polymerases. A prominent characteristic for the Klenow fragment is that the replication velocity is independent of the assisting force whereas the velocity increases largely with the increase of the resisting force, attains the maximum velocity at about 3.8 pN and then decreases with the further increase of the resisting force.


Sign in / Sign up

Export Citation Format

Share Document