dehydrogenation reaction
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 54)

H-INDEX

29
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7613
Author(s):  
Sanghyoun Park ◽  
Mujahid Naseem ◽  
Sangyong Lee

The development of alternate clean energy resources is among the most pressing issues in the energy sector in order to preserve the global natural environment. One of the ideal candidates is the utilization of hydrogen as a primary fuel in lieu of fossil fuels. It can be safely stored in liquid organic hydrogen carrier (LOHC) materials and recovered on demand. A uniform supply of hydrogen is essential for power production systems for their smooth operation. This study was conducted to determine the operating conditions of the dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) to ensure that hydrogen supply in a continuous flow reactor remains stable over a wide range of temperatures. The hydrogen flow rate from the dehydrogenation reaction was measured and correlated with the degree of dehydrogenation (DoD) evaluated from the refractive index of reactant liquid samples at various temperatures, WHSV and the initial reactant concentrations. Moreover, a kinetic model is presented holding validity up to a WHSV of 67 h−1. The results acquired present a range for an order of reaction from 2.3 to 2.4 with the required activation energy of 171 kJ/mol.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 955
Author(s):  
Durga Acharya ◽  
Derrick Ng ◽  
Zongli Xie

Methylcyclohexane (MCH), one of the liquid organic hydrogen carriers (LOHCs), offers a convenient way to store, transport, and supply hydrogen. Some features of MCH such as its liquid state at ambient temperature and pressure, large hydrogen storage capacity, its well-known catalytic endothermic dehydrogenation reaction and ease at which its dehydrogenated counterpart (toluene) can be hydrogenated back to MCH and make it one of the serious contenders for the development of hydrogen storage and transportation system of the future. In addition to advances on catalysts for MCH dehydrogenation and inorganic membrane for selective and efficient separation of hydrogen, there are increasing research interests on catalytic membrane reactors (CMR) that combine a catalyst and hydrogen separation membrane together in a compact system for improved efficiency because of the shift of the equilibrium dehydrogenation reaction forwarded by the continuous removal of hydrogen from the reaction mixture. Development of efficient CMRs can serve as an important step toward commercially viable hydrogen production systems. The recently demonstrated commercial MCH-TOL based hydrogen storage plant, international transportation network and compact hydrogen producing plants by Chiyoda and some other companies serves as initial successful steps toward the development of full-fledged operation of manufacturing, transportation and storage of zero carbon emission hydrogen in the future. There have been initiatives by industries in the development of compact on-board dehydrogenation plants to fuel hydrogen-powered locomotives. This review mainly focuses on recent advances in different technical aspects of catalytic dehydrogenation of MCH and some significant achievements in the commercial development of MCH-TOL based hydrogen storage, transportation and supply systems, along with the challenges and future prospects.


Author(s):  
C. S. Praveen ◽  
A. Comas-Vives

AbstractOne class of particularly active catalysts for the Propane Dehydrogenation (PDH) reaction are well-defined M(III) sites on amorphous SiO2. In the present work, we focus on evaluating the catalytic trends of the PDH for four M(III) single-sites (Cr, Mo, Ga and In) on a realistic amorphous model of SiO2 using density functional theory-based calculations and the energetic span model. We considered a catalytic pathway spanned by three reaction steps taking place on selected MIII–O pair of the SiO2 model: σ-bond metathesis of propane on a MIII–O bond to form M-propyl and O–H group, a β-H transfer step forming M–H and propene, and the H–H coupling step producing H2 and regenerating the initial M–O bond. With the application of the energetic span model, we found that the calculated catalytic activity for Ga and Cr is comparable to the ones reported at the experimental level, enabling us to benchmark the model and the methodology used. Furthermore, results suggest that both In(III) and Mo(III) on SiO2 are potential active catalysts for PDH, provided they can be synthesized and are stable under PDH reaction conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhishan Luo ◽  
Qiang Wan ◽  
Zhiyang Yu ◽  
Sen Lin ◽  
Zailai Xie ◽  
...  

AbstractStyrene is one of the most important industrial monomers and is traditionally synthesized via the dehydrogenation of ethylbenzene. Here, we report a photo-induced fluorination technique to generate an oxidative dehydrogenation catalyst through the controlled grafting of fluorine atoms on nanodiamonds. The obtained catalyst has a fabulous performance with ethylbenzene conversion reaching 70% as well as styrene yields of 63% and selectivity over 90% on a stream of 400 °C, which outperforms other equivalent benchmarks as well as the industrial K−Fe catalysts (with a styrene yield of 50% even at a much higher temperature of ca. 600 °C). Moreover, the yield of styrene remains above 50% after a 500 h test. Experimental characterizations and density functional theory calculations reveal that the fluorine functionalization not only promotes the conversion of sp3 to sp2 carbon to generate graphitic layers but also stimulates and increases the active sites (ketonic C=O). This photo-induced surface fluorination strategy facilitates innovative breakthroughs on the carbocatalysis for the oxidative dehydrogenation of other arenes.


Author(s):  
Shailesh Dangwal ◽  
Anil Ronte ◽  
Ghader Mahmodi ◽  
Payam Zarrintaj ◽  
Jong Suk Lee ◽  
...  

Synlett ◽  
2021 ◽  
Author(s):  
Jiyuan LYU ◽  
Tuan Le ◽  
Clémence Allain ◽  
Pierre Audebert ◽  
Geraldine Masson

Efficient photocatalytic aerobic oxidative dehydrogenation reaction of N,N-disubstituted hydroxylamines to nitrones were developed with an in situ generated photocatalyst based on commercially available 3,6-dichlorotetrazine. This process affords a wide range of nitrones in high yields under mild conditions. In addition, an oxidative (3+3) cycloaddition between an oxyallyl cation precursor and a hydroxylamine was also developed.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1070
Author(s):  
Marco Martino ◽  
Eugenio Meloni ◽  
Giovanni Festa ◽  
Vincenzo Palma

Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.


ACS Catalysis ◽  
2021 ◽  
pp. 11469-11477
Author(s):  
Linlin Wang ◽  
Jiangyong Diao ◽  
Mi Peng ◽  
Yunlei Chen ◽  
Xiangbin Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document