scholarly journals MO SYSTEM USING A SHORT WAVELENGTH LIGHT SOURCE

1995 ◽  
Vol 19 (S_1_MORIS_94) ◽  
pp. S1_295-299 ◽  
Author(s):  
A. FUKUMOTO ◽  
Y. TAKESHITA ◽  
I. ICHIMURA
SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A103-A103
Author(s):  
Brooke Mason ◽  
Andrew Tubbs ◽  
William Killgore ◽  
Fabian-Xosé Fernandez ◽  
Michael Grandner

Abstract Introduction Short-wavelength light (440-530nm) can suppress endogenous melatonin secretion from the pineal gland. This has been observed in realworld settings when people use electronic media at night that emits light from this part of the visible spectrum. Blue-blocking glasses are a possible intervention to reduce blue light exposure. The present study evaluated the ability of commercially available blue-blockers to block blue light emitted by LEDs. Methods A calibrated spectroradiometer (Ocean Insight), cosine corrector, optic fiber, and software package were used to measure the absolute irradiance (uW/cm^2/nm) generated from a blue light source (Phillips Go Lite Blu) in an otherwise completely dark room. Thirty-one different commercially-available blue-blockers were individually placed between the cosine corrector and the light source at a standardized distance, and then intensity was measured and analyzed. Lenses were evaluated with regards to the amount of blue light they suppressed both individually and grouped by lens tint: red-tinted lenses (RTL), orange-tinted lenses (OTL), orange-tinted lenses with blue reflectivity (OBL), brown-tinted lenses (BTL), yellow-tinted lenses (YTL), and clear lenses with blue reflectivity (RBL). Results RTL blocked 100% of the short-wavelength light, while OTL and OBL blocked 99%, BTL blocked 66%, YTL blocked 38%, and RBL blocked 11% of it. This represented a statistically significant between-group difference (one-way ANOVA, < 0.0001). Within groups, there was variability in performance among individual lenses, though this variability was small compared to the between-group differences. Conclusion The RTL, OTL, and OBL block light best capable of suppressing melatonin secretion at night (440-530 nm); with slightly less efficacy, BTL and YTL also restricted much of the light exposure. Lastly, RBL were not effective at curtailing short-wavelength light. Those looking to optimize blue-blocking capabilities should use RTL, OTL, and OBL, rather than other lens types. Support (if any):


2018 ◽  
Vol 19 (6) ◽  
pp. 728-735 ◽  
Author(s):  
Melanie Knufinke ◽  
Lennart Fittkau-Koch ◽  
Els I. S. Møst ◽  
Michiel A. J. Kompier ◽  
Arne Nieuwenhuys

2019 ◽  
Vol 39 (6) ◽  
pp. 459-468 ◽  
Author(s):  
Manuel Spitschan ◽  
Rafael Lazar ◽  
Christian Cajochen

2014 ◽  
Vol 31 (5) ◽  
pp. 690-697 ◽  
Author(s):  
Marina C. Giménez ◽  
Domien G. M. Beersma ◽  
Pauline Bollen ◽  
Matthijs L. van der Linden ◽  
Marijke C. M. Gordijn

2019 ◽  
Vol 34 (4) ◽  
pp. 391-400 ◽  
Author(s):  
Lisa Soyeon Baik ◽  
Yocelyn Recinos ◽  
Joshua A. Chevez ◽  
David D. Au ◽  
Todd C. Holmes

Short-wavelength light guides many behaviors that are crucial for an insect’s survival. In Drosophila melanogaster, short-wavelength light induces both attraction and avoidance behaviors. How light cues evoke two opposite valences of behavioral responses remains unclear. Here, we comprehensively examine the effects of (1) light intensity, (2) timing of light (duration of exposure, circadian time of day), and (3) phototransduction mechanisms processing light information that determine avoidance versus attraction behavior assayed at high spatiotemporal resolution in Drosophila. External opsin-based photoreceptors signal for attraction behavior in response to low-intensity ultraviolet (UV) light. In contrast, the cell-autonomous neuronal photoreceptors, CRYPTOCHROME (CRY) and RHODOPSIN 7 (RH7), signal avoidance responses to high-intensity UV light. In addition to binary attraction versus avoidance behavioral responses to UV light, flies show distinct clock-dependent spatial preference within a light environment coded by different light input channels.


Sign in / Sign up

Export Citation Format

Share Document