scholarly journals Determining the Number of Solar Modules of a 1kW Solar Energy System in Antalya, Turkey

2018 ◽  
Vol 1 (1) ◽  
pp. 521-525
Author(s):  
Ceyda Aksoy Tırmıkçı ◽  
Cenk Yavuz

In this paper the number of solar modules of a 1kW solar energy system was determined by using the total solar radiation and the solar module energy output energy relation. The total solar radiation was correlated with the tilt angle of solar modules. Thus the optimum yearly tilt angle of solar modules was calculated and assumed that solar modules of the system were tilted at this angle. In conclusion the monthly average daily total solar radiation, optimum yearly tilt angle and the number of solar modules of the related system were established for the city.

2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Orhan Ekren

Characteristics of site-specific solar irradiation is required to optimize a solar energy system. If no tracking system is used, the amount of electricity or heat produced by solar energy depends on the total solar radiation on a tilted surface. Although pyranometer measures direct plus diffuse solar radiation on a horizontal surface, there are many locations where diffuse radiation is not measured. Also, diffuse radiation is necessary to determine the total radiation on a tilted surface. Therefore, in this study, new correlations for diffuse solar radiation is proposed as a function of atmospheric parameters for Urla (Izmir, Turkey). After applying the statistical procedure on the measured data, seven new correlations are proposed for the ratio of hourly average diffuse and total radiation. Also, the ratio of monthly average daily diffuse and total radiation for this region is proposed.


2014 ◽  
Vol 953-954 ◽  
pp. 107-110
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Dong Yu Li

Transient and daily thermal performances of the balcony-type solar water heater with a flat-plate collector were investigated under different weather conditions in Kunming. The results showed that the solar irradiance has a few influences on the thermal performance of the solar water heater. The system thermal efficiency is 50-57% when the daily total radiation varies from 5.3 to 22.2 MJ·m-2. The initial temperature of the water in the water tank has great effects on the thermal efficiency. The daily thermal efficiency decreases by 9% when the initial temperature increases by 10°C. The percentage (Useful energy/Energy need) exceeds 60% when the daily total solar radiation is more than 11.6 MJ·m-2. When the daily total solar radiation is larger than 21 MJ·m-2, the useful energy output of the solar water heater can meet the user requirement for hot water.


2019 ◽  
Vol 8 (5) ◽  
pp. 391-399
Author(s):  
Ceyda Aksoy Tırmıkçı ◽  
Cenk Yavuz

Purpose The purpose of this paper is to propose a fixed PV energy system design and a sun tracking PV energy system design to meet the primitive energy demands of a typical house in Sakarya, Turkey with energy payback times (EPBT) and greenhouse payback times (GPBT) calculations. Design/methodology/approach The designs were developed based on the total solar radiation received on the surface of the PV modules. The EPBT and the GPBT of the designs were investigated by utilizing the current embodied energy data of the literature and annual energy output of the proposed systems. The monthly mean total solar radiation, the yearly total solar radiation and the annual energy output of the systems were calculated according to the results of previous studies of authors on 80-W prototypes of a fixed PV energy system tilted at the yearly optimum tilt angle of Sakarya and a two-axis sun tracking PV energy system. Findings The annual energy outputs of the fixed system and the tracking system were established to be 10.092 and 10.311 MJ, respectively. EPBT of the systems were estimated 15.347 years for the fixed system and 11.932 years for the tracking systems which were less than the lifespan of PV modules. The greenhouse gas emitted to produce and install the systems were estimated to be 6,899.342 kg for the fixed system and 5,040.097 kg for the tracking system. GPBT of the systems were calculated to be 5.203 and 2.658 years, respectively. Originality/value PV energy is clean without greenhouse gas emission during the operation. However, significant emissions occur in the life cycle of PV modules until the installation is completed. Therefore reducing the number of PV modules make great differences in the GPBT of PV energy systems. In this paper, comparisons between the GPBT results of the optimally tilted fixed system and tracking system were performed to discuss the best option by means of environmental concerns.


2020 ◽  
pp. 90-102
Author(s):  
Trina Som ◽  
A. Sharma ◽  
D. Thakur

In the present study, performance analyses of a solar module are made through the optimal variation of solar tilt angle, pertaining to the maximum generation of solar energy. The work has been carried out for a particular location at Tripura, in India, considering three different cases on an annual basis. An intelligent behavioural based algorithm, known as artificial bee algorithm (ABC), has been implemented for finding the optimal orientation of solar angle in analysing the performance. The result shows marginal differences are obtained in producing yearly maximum solar energy for different orientations of the PV module. It has been observed that the maximum average solar energy is obtained for the case where continuous adjustment is made by rotating the plane about the horizontal east-west axis within 20° to 30° tilt angle. The computed maximum and minimum of the monthly average efficiency is 10.9% and 8.7%, respectively. Further, a comparative study has been performed in generating average solar energy through optimal tilt angle by the implementation of Perturb & Observe method (P&O). The monthly average solar power computed by P&O method resulted better in a range of 2% to 15% in comparison to that obtained by ABC. While on the other hand, the efficiency computed by ABC algorithm was 15% to 19% better than that evaluated by P&O method for all the cases studied in the present work.


Author(s):  
Yilser Devrim ◽  
Serkan Eryilmaz

In this article, a hybrid system that consists of a specified number of wind turbines and solar modules is considered. In particular, the system is modeled using weighted k-out-of- n system which is also known as a threshold system in reliability literature. The system under concern consists of [Formula: see text] identical wind turbines and [Formula: see text] identical solar modules, and each turbine and module can be in one of two states as working or failed. The probability that the entire hybrid system with [Formula: see text] components produces power at minimum level k is computed and evaluated. The importance of single-wind turbine and solar module is also calculated to measure which renewable energy component is more critical and important. Extensive numerical results that are based on real data set are presented to illustrate the model.


2019 ◽  
Vol 11 (22) ◽  
pp. 6443 ◽  
Author(s):  
Hailu ◽  
Fung

We present a study conducted to obtain optimum tilt angle and orientation of a solar panel for the collection of maximum solar irradiation. The optimum tilt angle and orientation were determined using isotropic and anisotropic diffuse sky radiation models (isotropic and anisotropic models). The four isotropic models giving varying optimum tilt angles in the range of 37 to 44°. On the other hand, results of the four anisotropic models were more consistent, with optimum tilt angles ranging between 46–47°. Both types of models indicated that the collector tilt should be changed four times a year to receive more solar radiation. The results also indicate that the solar panel should be installed with orientation west or east of due south with a flatter tilt angle. A 15° change in orientation west or east of due south results in less than 1% reduction of the total solar radiation received. For a given optimum tilt angle, the effect of photovoltaic/thermal (PV/T) orientation west or east of due south on the outlet temperature was determined using a one-dimensional steady state heat transfer model. It was found that there is less than 1.5% decrease in outlet temperature for a PV/T panel oriented up to 15° east or west of due south from March to December. This result indicates that existing roofs with orientations angles up to 15° east or west of due south can be retrofitted with a PV/T system without changing the roof shape.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


Author(s):  
Alberto Ortega ◽  
Rodrigo Escobar ◽  
Sergio Colle

The Chilean government’s energy policy and the power generation sector plans include wind, geothermal, hydro and biomass powerplants in order to introduce renewable energy systems to the country, but they do not mention solar energy to be a part of the plan. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system planning activities. The only available solar radiation database is relatively old, with measurements taken in 89 stations from the 60’s onwards, obtained with high-uncertainty sensors such as Campbell-Stokes devices and pyranographs. Moreover, not all stations have measured incoming solar radiation for an adequate time span. Here, we compare the existing database of solar radiation in Chile with estimations made with satellite measurements, obtained from the GOES program through collaboration with the Brazilian space institution, INPE. Monthly mean solar energy maps are created from both data sources and compared, using Krigging methods for spatial interpolation. It is found that a maximum 30 percent deviation exist, with snow covers in the Andes Mountains adding additional uncertainty levels. The solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning given proper diffusion and support by editing a Chilean Solar Atlas.


2020 ◽  
Author(s):  
Jan Wohland ◽  
Hannah Bloomfield ◽  
David Brayshaw ◽  
Stefan Pfenninger ◽  
Martin Wild

<p>The variability of renewable power generation is often quantified based on modern reanalyses such as ERA5 or MERRA-2 which provide climatic information over the last few decades. Compared to infrastructure lifetimes, modern reanalyses cover only short periods and may consequently fail to sample relevant longer-term climate variability. While there is evidence for multi-decadal variability in wind power generation [Wohland et al. (2019), Zeng et al. (2019)], hydropower [Bonnet et al. (2017)] and solar energy [Sweerts et al. (2019)], a consistent treatment of multi-decadal variability has not been achieved. </p><p>This knowledge barrier can potentially be overcome using 20th century reanalyses which provide internally consistent fields of energy-relevant variables (e.g., solar radiation, precipitation, temperature and wind). However, the provision of reliable climatic information on these timescales is known to be a challenge due to, for example, the evolution of measurement techniques. Some cases of spurious trends and other shortcomings of the datasets are known. It is therefore of utmost importance to quantify uncertainties prior to usage in energy system studies. To this end, we systematically compare 20CRv3, 20CRv2c, CERA20C and ERA20C with respect to variables needed in renewable energy assessments and report similarities and discrepancies accross the datasets. The focus is given to substantial differences with respect to multi-decadal solar radiation variability in Europe, also known as dimming and brightening. </p><p><br>References</p><p>Bonnet, R., Boé, J., Dayon, G. & Martin, E. Twentieth-Century Hydrometeorological Reconstructions to Study the Multidecadal Variations of the Water Cycle Over France. Water Resour. Res. 53, 8366–8382 (2017).</p><p>Sweerts, B. et al. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat Energy 4, 657–663 (2019).</p><p>Wohland, J., Omrani, N. E., Keenlyside, N. & Witthaut, D. Significant multidecadal variability in German wind energy generation. Wind Energ. Sci. 4, 515–526 (2019).</p><p>Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. (2019).</p>


Sign in / Sign up

Export Citation Format

Share Document