scholarly journals Aplikasi solidwork untuk rancangan CAD 3D pada mesin 3D printer 2x2x2 meter

JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 9
Author(s):  
Budhy Setiawan ◽  
Isa Triyanti Santoso ◽  
Achmad Walid ◽  
Ryan Prasetyo ◽  
Delila Cahya Permatasari ◽  
...  

ABSTRAK Mesin 3D printing dapat membuat proses produksi menjadi singkat dan sederhana, keunggulan ini menjadikan banyak peneliti mulai menggembangkan mesin printing. Pengembangan mesin printing yang sudah dilakukan salah satunya adalah mesin 3D printer 2 x 2 x 2 meter. Keberhasilan mesin printing dapat dilihat dari hasil printing yang sesuai dengan desain yang diharapkan. Oleh karena itu, diperlukan aplikasi yang dapat membantu merancang desain objek 3D pada mesin printer 2x2x2 meter, salah satunya menggunakan aplikasi CAD (Computer Aided Design) “SolidWork”. Aplikasi “SolidWork” bersifat opensource yang dapat membantu mengetahui pengaruh desain 3 dimensi menggunakan software CAD terhadap jarak, sudut dan skala objek pada mesin printer 2x2x2 meter. Desain objek 3D “SolidWork” disimpan dalam dalam format file STL, kemudian diproses di dalam Simplify 3D, objek akan diiris secara software. Hasil irisan gambar 3D akan menghasilkan sebuah file G-Code. Output koordinat dari G-Code digunakan untuk menggerakan motor stepper. Hasil cetak objek 2D memiliki error ukuran bentuk segitiga 4,62%, bentuk straight slog 7,49%, bentuk oval 5,54%, error sudut sebesar 0% dan error skala objek 0%. Sedangkan untuk objek 3D memiliki error rata – rata sebesar 0,29%. Berdasarkan hasil pengujian aplikasi “SolidWork” dapat menujukkan kinerja mesin dan membantu dalam pembuatan desain 2D dan 3D pada mesin 3D printer 2x2x2 meter di Lab Elektro Prodi Elektronika Politeknik Negeri Malang. ABSTRACT 3D printing machines can make the production process short and simple, this advantage has made many researchers start to develop printing machines. One of the developments in printing machines that have been carried out is the 2 x 2 x 2 meter 3D Printer machine. The success of the printing machine can be seen from the printing results by the expected design. Therefore, an application is needed that can help design 3D object designs on a 2x2x2 meter printer machine, one of which is using the CAD (Computer-Aided Design) application "SolidWork". The application "SolidWork" is open source which can help determine the effect of 3-dimensional design using CAD software on the distance, angle, and scale of objects on a 2x2x2 meter printer machine. "SolidWorks" 3D object design is saved in STL file format, then processed in Simplify 3D, the object will be sliced ​​automatically. The sliced ​​3D image will produce a G-Code file. The coordinate output from the G-Code is used to drive the stepper motor. The printout of 2D objects has a triangular size error of 4.62%, a straight slog shape of 7.49%, an oval shape of 5.54%, an angle error of 0%, and a scale error of 0%. Meanwhile, 3D objects have an average error of 0.29%. Based on the results of testing the "SolidWork" application can show machine performance and assist in making 2D and 3D designs on a 2x2x2 meter 3D printer machine at the Electrical Lab of Electronics Study Program, State Polytechnic of Malang.  

2020 ◽  
Vol 188 ◽  
pp. 00003
Author(s):  
Armita Dewi ◽  
Hestiasari Rante ◽  
Achmad Basuki ◽  
Felix Pasila ◽  
Michael Lund

Smartphones have become a vital gadget that cannot be separated from human daily life. Various features provided on smartphones can attract attention, especially for children. Children today are very familiar with the smartphone. However, when they are using the smartphone, they often cannot manage the distance of eyes and the smartphone. Therefore, a smartphone holder that can control the distance can be a solution to this problem. The smartphone is designed with the flexibility to arrange the length of the stand depending on user needs. This paper presents the process of making the smartphone holder using a 3D printer. Through product development phase like design creation, digital simulation, computer aided design-computer aided manufacturing (CAD-CAM), and the production process of the holder with 3D printer, the smartphone holder is produced.


2021 ◽  
pp. 97-110
Author(s):  
V.V. Batrakov ◽  
A.I. Krylov ◽  
V.N. Saev ◽  
B.N. Nefyodov ◽  
V.M. Novichkov ◽  
...  

The paper presents space simulators (SS), types of instrumentation equipment installed on the workplaces of the space simulators operators (SSOPW), multi-functional display panel (MFDP), computer-aided design (CAD) tools, 3D printing technologies.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenxi Huang ◽  
Yisha Lan ◽  
Sirui Chen ◽  
Qing Liu ◽  
Xin Luo ◽  
...  

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.


2017 ◽  
Vol 5 (4) ◽  
Author(s):  
E. B. Brousseau ◽  
S. Thiery ◽  
B. Arnal ◽  
E. Nyiri ◽  
O. Gibaru ◽  
...  

This paper reports a feasibility study that demonstrates the implementation of a computer-aided design and manufacturing (CAD/CAM) approach for producing two-dimensional (2D) patterns on the nanoscale using the atomic force microscope (AFM) tip-based nanomachining process. To achieve this, simple software tools and neutral file formats were used. A G-code postprocessor was also developed to ensure that the controller of the AFM equipment utilized could interpret the G-code representation of tip path trajectories generated using the computer-aided manufacturing (CAM) software. In addition, the error between a machined pattern and its theoretical geometry was also evaluated. The analyzed pattern covered an area of 20 μm × 20 μm. The average machined error in this case was estimated to be 66 nm. This value corresponds to 15% of the average width of machined grooves. Such machining errors are most likely due to the flexible nature of AFM probe cantilevers. Overall, it is anticipated that such a CAD/CAM approach could contribute to the development of a more flexible and portable solution for a range of tip-based nanofabrication tasks, which would not be restricted to particular customised software or AFM instruments. In the case of nanomachining operations, however, further work is required first to generate trajectories, which can compensate for the observed machining errors.


2020 ◽  
Author(s):  
Z. Erdos ◽  
P. Halswell ◽  
A. Matthews ◽  
B. Raymond

AbstractThe lack of commercially available low-cost laboratory spraying equipment for testing microbial control agents can hinder advancement in the field of biocontrol. This study presents an inexpensive, portable sprayer that is calibrated utilizing laboratory consumables. The computer aided design files are made available so that it is freely modifiable and can be used for machine routing or 3D printing. Bioassay data was obtained by spraying Myzus persicae with spores of entomopathogenic fungi. Observed variation in droplet deposition within tested pressure and volume settings, and spore deposition within sprayed concentrations were low. Bioassay results show reproducible mortality for the tested doses.


Author(s):  
Roydan Dsouza

3D Printing refers to a class of technology that can automatically construct 3-dimensional physical models from Computer Aided Design (CAD) data. Reduction of product development cycle time is a major concern in industries for achieving competitive advantage. Endodontic dentistry is the dental specialty concerned with the study and treatment of the dental pulp, and generally diagnose tooth pain and perform root canal treatment and other procedures relating to the interior of the tooth. This article, therefore, aims on being an assistive methodology in endodontics by applying 3D printing in order to reduce the strain involved in the tooth restoration process.


Sign in / Sign up

Export Citation Format

Share Document