scholarly journals Effect of dietary amino acid density on broiler breeder reproductive performance

2019 ◽  
Vol 98 (5) ◽  
pp. 2072-2079 ◽  
Author(s):  
S. Cerrate ◽  
J.T. Halley ◽  
A. Corzo ◽  
B.I. Fancher
2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 76-76
Author(s):  
Ron Ball ◽  
Crystal L Levesque ◽  
D J Cadogan

Abstract Most sows are fed a constant energy and amino acid supply throughout gestation, in line with the recommendations of most authorities and swine genetic companies. These recommendations for sow feeding have seen little change in decades, despite the many ways that sows have changed dramatically in reproductive performance. Beginning in about the year 2000, sow litter size has steadily increased as a result of genetic selection. With this increase in litter number has been a steady decline in birth weight, and the resulting negative effects of lower birthweight on subsequent piglet performance. Many experiments using so-called ‘bump’ feeding, or increased energy intake in late gestation, have been conducted in attempts to arrest this decline in birthweight and piglet performance. Generally, these experiments have shown little to no improvement in birthweight and often have negative effects on sow feed intake during gestation. These experiments have ignored the fact that the energy:amino acid ratios (lysine, threonine, isoleucine, tryptophan) in late gestation are different than during early and mid-gestation. In recent research in Australia we hypothesised that rapidly increasing essential amino acid levels in late gestation would increase birth weight and potentially improve subsequent reproductive performance. Three hundred and thirty-four multiparous PIC sows (average parity 3.6, average LW 261 kg) were housed in a dynamic gestation pen after mating and randomly assigned to one of two diet regimes. Two 13.5 MJ/kg DE gestation diets were formulated and created by blending in an ESF. The Control diet contained 0.48 g SID lysine per MJ DE and SID threonine, methionine+ cysteine, isoleucine and tryptophan at 68%, 65%, 58% and18% of SID lysine and offered at 2.2kg/day from d 28 to d 110. Sow were then moved to the farrowing house and placed on a lactation diet at 3.5kg/d. The Treatment diet contained 0.55 g SID lysine/MJ DE and SID threonine, methionine+cysteine, isoleucine and tryptophan at 78%, 65%, 60% and 20% of SID lysine and offered at 2.1kg/d from d 28 to d 85 and then increased to 2.4 kg/d to d 110 d. Increasing essential amino acid levels in late gestation increased gestational weight gain (5.6 kg, P=0.004), increased total litter birth weight (1.25 kg, P=0.003), and increased the birthweight of liveborn pigs from 1.286 to 1.329 kg, (P=0.04). There was no significant effect on the total number born or born alive. Piglet performance is not available because this commercial farm practices cross-fostering. Effects of continuation of this feeding regime in the same sows during subsequent parities is currently being evaluated.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Andrew Matchado ◽  
Kathryn Dewey ◽  
Christine Stewart ◽  
Per Ashorn ◽  
Ulla Ashorn ◽  
...  

Abstract Objectives 1) to estimate the probability of inadequate amino acid intake among infants 9–10 months of age in rural Malawi 2) to evaluate whether dietary amino acid intake or protein quality are associated with length gain from 6 to 12 months of age Methods We assessed total amino acid intake from breast milk and complementary foods in 285 infants. Breast milk intake and complementary foods were estimated using dose-to-mother deuterium oxide dilution method and repeat 4-pass interactive 24-hour recall interviews, respectively. Amino acid composition values were taken from FAO human milk profile, Tanzania Food Composition table and International Minilist. Protein quality was estimated using Digestible Indispensable Amino Acid Score (DIAAS). Probability of intake below Estimated Average Requirement (EAR) for each amino acid was estimated using National Cancer Institute (NCI) method. We estimated protein quality of complementary food using median DIAAS. We assumed a DIAAS of ≥0.75 to represent a diet or food with good protein quality. Relationships between amino acid intake or protein quality with length gain were assessed using regression models. Length was measured at 6 and 12 months of age and length for age z-score (LAZ) velocity was calculated (ΔLAZ/months). Results The probability of inadequate amino acid intake from breast milk and complementary food that included a lipid-based nutrient supplement (LNS) was 3% for lysine, 0% for tryptophan, threonine, valine, histidine, isoleucine, leucine, sulfur containing amino acids (SAA), and aromatic amino acids (AAA). Without LNS, the probability was 7% for lysine and 0–2% for the other amino acids. The median (interquartile range) DIAAS for complementary food with and without LNS was 0.70 (0.28) and 0.64 (0.32), respectively. Dietary amino acid intake and protein quality were not significantly associated with length gain velocity from 6 to 12 months even after adjusting for confounding factors. Conclusions The prevalence of inadequate amino acid intake in 9–10 months old infants in rural Malawi is very low. However, in conditions of frequent clinical or sub-clinical infections this situation may be different. Linear growth at 6–12 months does not appear to be limited by dietary amino acid intake or protein quality in this setting. Funding Sources The Bill & Melinda Gates Foundation.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


2021 ◽  
pp. 101033
Author(s):  
Bo Zhang ◽  
Xue Zhang ◽  
M. Wes Schilling ◽  
Xiaofei Li ◽  
George T. Tabler ◽  
...  

2016 ◽  
Vol 101 (6) ◽  
pp. 1194-1204 ◽  
Author(s):  
J. C. P. Dorigam ◽  
N. K. Sakomura ◽  
M. F. Sarcinelli ◽  
C. A. Gonçalves ◽  
M. B. de Lima ◽  
...  

2014 ◽  
Vol 36 (2) ◽  
pp. 163 ◽  
Author(s):  
Edney Pereira da Silva ◽  
Nilva Kazue Sakomura ◽  
Juliano Cesar De Paula Dorigam ◽  
Euclides Braga Malheiros ◽  
Joao Batista Kochenborger Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document