scholarly journals POTATO VIRUS Y: AN EVOLVING PATHOGEN OF POTATO WORLDWIDE

2017 ◽  
Vol 29 (1) ◽  
pp. 187 ◽  
Author(s):  
Khalid Naveed ◽  
Amjad Abbas ◽  
Luqman Amrao

Potato virus Y (PVY) is one of the important diseases of potato throughout the world wherever potatoes are grown. Yield losses in potato due to PVY are upto 70% if infection occurs at initial growth stages of plants. More than eight PVY strains have been reported worldwide which differ from each other based on symptoms they produce in the infected host plants and at their genetic makeup. In recent past years, new necrotic strains of PVY have emerged which are more damaging as they produce necrotic rings and arms on the tubers of infected plants. With increasing aphid population during last decade, incidence of PVY epidemics has increased worldwide. Managing PVY is difficult as some strains do not produce symptoms on infected potato plants and disease diagnosis becomes difficult. In Pakistan, work on strain differentiation of PVY and their aphid vectors are lacking and there is need of molecular research to identify PVY strains which are present in Pakistan.

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1017-1017
Author(s):  
G. Anfoka ◽  
F. Haj Ahmad ◽  
M. Altaleb ◽  
M. Al Shhab ◽  
S. Abubaker ◽  
...  

Potato (Solanum tuberosum L.) is an important vegetable crop in Jordan, occupying second position after olives. In 2012, potatoes were planted on about 6,000 ha with a production of about 141,000 t (2). Potato virus Y (PVY) is a serious problem for potato production worldwide. Recombinant strains of the virus were reported to cause tuber necrotic ringspot disease (PTNRD) in many potato-growing regions of the world. In the last few years, a new recombinant PVYNTN-NW that belongs to PVYZ (3) has been reported in the neighboring Syria. It included three recombination patterns, SYR-I, SYR-II, and SYR-III, and caused severe PTNRD (1). Since PVY is easily transmitted from one region to another by aphid vectors and infected potato seeds, this study was initiated to investigate the possible occurrence of PVY strains in Jordan. In October 2013, 33 leaf samples were collected from symptomatic potato plants cv. Spunta from Wadi Rum, Jordan (GPS coordinates 29°31′37.76″ N, 35°42′48.75″ E), the largest potato-producing area in Jordan. Sampled plants displayed leaf mottling and yellowing, symptoms similar to those caused by PVY. All samples were tested for PVY by DAS-ELISA using the ELISA kit (monoclonal cocktail) developed by BIOREBA (Reinach, Switzerland) to detect all PVY isolates. Twenty-nine samples were found positive for PVY by ELISA. To confirm virus infection, total RNA was extracted from all ELISA-positive samples and used as template in uniplex RT-PCR using strain-specific primers (1). The band pattern of PCR amplicons showed that 12 samples were infected with PVYNTN-NW genotype SYR-III and produced bands of 1,085, 441, and 278 bp. One sample was infected with PVYNTN (A) and produced bands of 1,307, 633, and 441 bp, and one other sample was infected with PVYNTN-NW genotype SYR-II and produced bands of 1,085 and 441 bp. Mixed infection with PVYNTN-NW genotype SYR-III and PVYNTN (B) was also detected in one sample producing bands of 278, 441, 1,085, and 1,307 bp. To confirm infection with the recombinant strains, PCR fragments of 278 bp amplified from three samples and 1,085 bp obtained from another three samples were directly sequenced and sequences were deposited in GenBank under accession numbers KJ159968, KJ159969, and KJ159970 for the 278-bp fragment and KJ159974, KJ159975, and KJ159976 for the 1,085-bp fragment. Sequence comparison with other PVY strains available in the NCBI database showed that the 278-bp fragment had the highest nucleotide sequence identity (100%) with PVY isolates SYR-III-A26 (AB461467) and SYR-III-2-4 (AB461457) from Syria. BLAST searches also showed that the 1,085-bp fragment shared 99% nucleotide identities with PVY isolates SYR-II-L3 (AB461482) and SYR-II-Be4 (AB461474) from Aleppo, Syria. To our knowledge, this is the first report of PVY recombinants in Jordan, and the first report of PVYNTN-NW recombinants infecting potato crop outside Syria. Since Europe is the main supplier of potato seeds for farmers in Jordan and Syria, the introduction of PVYNTN-NW to the region could have happened through infected potato seeds. Results of this study create new challenges for potato growers in Jordan as well as other countries in the region. References: (1) M. Chikh Ali et al. J. Virol. Methods 165:15, 2010. (2) FAO. http://faostat.fao.org/ (3) A. V. Karasev and S. M. Gray. Ann. Rev. Phytopathol. 51:571, 2013.


1999 ◽  
Vol 55 (3) ◽  
pp. 143-150 ◽  
Author(s):  
J. HINRICHS-BERGER ◽  
M. HARFOLD ◽  
S. BERGER ◽  
H. BUCHENAUER

2016 ◽  
Vol 34 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Pablo Gutiérrez S. ◽  
Mauricio Marín M. ◽  
Daniel Muñoz E.

Potato virus Y (PVY) is one of the most severe viruses affecting the production of potato (Solanum tuberosum) in the world. This study presents a detailed molecular analysis using nextgeneration sequencing (NGS), IC-RT-qPCR and RT-PCR on the PVY isolates infecting seed-tubers and foliage of potato plants cv. Diacol-Capiro in La Union (Antioquia, Colombia). Analysis of incidence by IC-RT-qPCR in 15 random leaf samples of three cultivation plots and fifteen sprouting tuber eye-buds reveal infection levels between 13.4 and 80%; a higher incidence of 86.7% was observed in seed-tuber samples with threshold cycle (Ct) values as low as 24.3. Genome assembly from a bulk of foliage samples resulted in a consensus PVY genome (PVY_LaUnionF) of 9,702 nt and 399 polymorphic sites within the polyprotein ORF; while the assembled genome from sprouts of tubers has 9,704 nt (PVY_LaUnionT) and contained only six polymorphic nucleotide sites. Phylogenetic analysis demonstrates that the PVY isolates from leaf samples are in the recombinant PVYNTN group (sequence identity >99%); while those from tuber sprouts are in the PVYN/NTN group with identities above 95%. Sanger sequencing of viral capsid suggests the presence of a third variant related to PVYO, a prevalent strain reported in potato fields worldwide.


2020 ◽  
Vol 22 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Igor Fesenko ◽  
Nadezhda Spechenkova ◽  
Anna Mamaeva ◽  
Antonida V. Makhotenko ◽  
Andrew J. Love ◽  
...  

2013 ◽  
Vol 70 (8) ◽  
pp. 1243-1248 ◽  
Author(s):  
Manphool Fageria ◽  
Sébastien Boquel ◽  
Gaetan Leclair ◽  
Yvan Pelletier

1997 ◽  
Vol 90 (3) ◽  
pp. 824-831 ◽  
Author(s):  
Christina D. Difonzo ◽  
David W. Ragsdale ◽  
Edward B. Radcliffe ◽  
Neil C. Gudmestad ◽  
Gary A. Secor

2010 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Felix A. Cervantes ◽  
Juan M. Alvarez

The complexity of the Potato virus Y (PVY) (Potyviridae: Potyvirus) pathosystem is affected by the presence of several virus strains that differ in their ability to produce tuber necrosis and by the presence of an alternate host that could increase the amount of inoculum in potato fields. Solanum sarrachoides (Sendtner) is an invasive weed from South America present in Pacific Northwest potato agro-ecosystems. It serves as reservoir of PVY and its most efficient vectors: the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas). The role of S. sarracoides as vector and virus reservoir in PVY epidemiology was investigated through a series of laboratory and greenhouse experiments. We studied the symptoms produced in S. sarracoides upon infection with necrotic and non-necrotic strains of PVY and looked at the percentage of infection and titer accumulation of these strains. PVY infection in S. sarrachoides produced symptoms similar to those produced in PVY-infected potato plants. Mottling and yellowing were the main symptoms of infection observed in S. sarrachoides plants, especially by PVYO and PVYNTN infection. Greenhouse transmission studies revealed that PVY-infected S. sarrachoides increased the transmission rate of PVY necrotic strains by M. persicae. The necrotic strain PVYNTN reached higher titer in S. sarrachoides than in potato plants when compared to PVYO and PVYN:O These findings have broadened our understanding of the role and importance of S. sarrachoides in the PVY epidemiology in the potato ecosystems and could potentially be included in the development or optimization of virus management programs. Accepted for publication 15 March 2010. Published 26 May 2010.


Sign in / Sign up

Export Citation Format

Share Document