scholarly journals Dominant Pole Based Approximation for Discrete Time System

Author(s):  
Richa ◽  
Awadhesh Kumar

This paper presents an effective procedure for model order reduction of discrete time control system. The exact model derived from complex dynamic systems proves to be very complicated for analysis, control and design. This necessity brings about using a tool known as model order reduction technique or model simplification. A novel mixed method has been implemented in this paper for reducing the order of the large scale dynamic discrete system. Dominant pole based pole clustering method has been used to derive the coefficients of denominator polynomial while Padé approximation has been applied to obtain the coefficients of numerator polynomial of the reduced order model. The proposed method is quite simple and able to generate a stable reduced order model from high order stable discrete systems. The dominancy of poles has been decided by values of the ratio of residue to its pole. The pole is considered dominant which have larger ratio value. An illustrative example has been considered to show the various reduction steps. The result obtained confirms the effectiveness of the approach.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Avadh Pati ◽  
Awadhesh Kumar ◽  
Dinesh Chandra

A Padé approximation based technique for designing a suboptimal controller is presented. The technique uses matching of both time moments and Markov parameters for model order reduction. In this method, the suboptimal controller is first derived for reduced order model and then implemented for higher order plant by partial feedback of measurable states.


Author(s):  
Yuqing Xie ◽  
Lin Li ◽  
Shuaibing Wang

Purpose To reduce the computational scale for quasi-magnetostatic problems, model order reduction is a good option. Reduced-order modelling techniques based on proper orthogonal decomposition (POD) and centroidal Voronoi tessellation (CVT) have been used to solve many engineering problems. The purpose of this paper is to investigate the computational principle, accuracy and efficiency of the POD-based and the CVT-based reduced-order method when dealing with quasi-magnetostatic problems. Design/methodology/approach The paper investigates computational features of the reduced-order method based on POD and CVT methods for quasi-magnetostatic problems. Firstly the construction method for the POD and the CVT reduced-order basis is introduced. Then, a reduced model is constructed using high-fidelity finite element solutions and a Galerkin projection. Finally, the transient quasi-magnetostatic problem of the TEAM 21a model is studied with the proposed reduced-order method. Findings For the TEAM 21a model, the numerical results show that both POD-based and CVT-based reduced-order approaches can greatly reduce the computational time compared with the full-order finite element method. And the results obtained from both reduced-order models are in good agreement with the results obtained from the full-order model, while the computational accuracy of the POD-based reduced-order model is a little higher than the CVT-based reduced-order model. Originality/value The CVT method is introduced to construct the reduced-order model for a quasi-magnetostatic problem. The computational accuracy and efficiency of the presented approaches are compared.


2019 ◽  
Vol 24 (1) ◽  
pp. 131-142 ◽  
Author(s):  
E. Tengs ◽  
F. Charrassier ◽  
M. Holst ◽  
Pål-Tore Storli

Abstract As part of an ongoing study into hydropower runner failure, a submerged, vibrating blade is investigated both experimentally and numerically. The numerical simulations performed are fully coupled acoustic-structural simulations in ANSYS Mechanical. In order to speed up the simulations, a model order reduction technique based on Krylov subspaces is implemented. This paper presents a comparison between the full ANSYS harmonic response and the reduced order model, and shows excellent agreement. The speedup factor obtained by using the reduced order model is shown to be between one and two orders of magnitude. The number of dimensions in the reduced subspace needed for accurate results is investigated, and confirms what is found in other studies on similar model order reduction applications. In addition, experimental results are available for validation, and show good match when not too far from the resonance peak.


2020 ◽  
Author(s):  
Farid N. Najm

<div>We start with a detailed review of the PACT approach for model order reduction of RC networks. We then develop a method that uses PACT as a preprocessing step to transform a generic lumped RC transmission line of some nominal order, based on a nominal (r,c) setting, into a parameterized circuit captured in a SPICE sub-circuit description. Then, given any other lumped RC line of the same order, we pass its (r,c) setting as parameters to this sub-circuit so as to automatically transform and reduce the line into a reduced order model without having to rerun PACT. In this way, we effectively characterize lumped RC transmission lines in a way that allows them to be reduced on-the-fly without any expensive processing.</div>


2019 ◽  
Vol 41 (10) ◽  
pp. 2875-2885 ◽  
Author(s):  
Othman Alsmadi ◽  
Adnan Al-Smadi ◽  
Esra’a Gharaibeh

Model order reduction (MOR) is a process of finding a lower order model for the original high order system with reasonable accuracy in order to simplify analysis, design, modeling and simulation for large complex systems. It is desirable that the reduced order model preserves the fundamental properties of the original system. This paper presents a new MOR technique of multi-input multi-output systems utilizing the firefly algorithm (FA) as an artificial intelligence technique. The reduction operation is proposed to maintain the exact dominant dynamics in the reduced order model with the advantage of substructure preservation. This is mainly possible for systems that are characterized as multi-time scale systems. Obtaining the reduced order model is achieved by minimizing the fitness function that is related to the error between the full and reduced order models’ responses. The new approach is compared with recently published work on firefly optimization for MOR, in addition to three other artificial intelligence techniques; namely, invasive weed optimization, particle swarm optimization and genetic algorithm. As a result, simulations show the potential of the FA for the process of MOR.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Pengfei Zhao ◽  
Cai Liu ◽  
Xuan Feng

We consider the shallow water equations (SWE) in spherical coordinates solved by Turkel-Zwas (T-Z) explicit large time-step scheme. To reduce the dimension of the SWE model, we use a well-known model order reduction method, a proper orthogonal decomposition (POD). As the computational complexity still depends on the number of variables of the full spherical SWE model, we use discrete empirical interpolation method (DEIM) proposed by Sorensen to reduce the computational complexity of the reduced-order model. DEIM is very helpful in evaluating quadratically nonlinear terms in the reduced-order model. The numerical results show that POD-DEIM is computationally very efficient for implementing model order reduction for spherical SWE.


2021 ◽  
Vol 14 (1) ◽  
pp. 157-168
Author(s):  
Hadeel Abdullah ◽  

The diverse engineering and scientific applications are stated through complex and high-order systems. The significant difficulties of these systems are the complications of modeling, analyzing, and controlling. It is easier to examine simpler models for more physical insights than more complex models and result in lower-ordering controllers that are easier to implement. The model order reduction (MOR) was used to simplify the computational difficulty of such complications and was later developed intensively for use with increasingly CDS. In this paper, a new Modified Chaos Particle Swarm Optimization (MCPSO) technique is employed to get a reduced-order model of a large scale system and design a Linear Quadratic Regulator (LQR) based controller. The mod uses the combination of advantages of basic PSO algorithms and chaotic algorithms. It becomes an excellent algorithm with fast convergence, few control parameters, simple execution, and avoidance of local extremes. In addition to combining the chaotic algorithm, CPSO also improved the weight parameter w, adjusting it to the dynamic attenuation direction. First, efficient reduced-order model parameters are obtained for original higher-order systems based on the MCPSO. Then linear quadratic regulator (LQR (controller parameters optimized for the reduced-order model. The goodness of the proposed method is evaluated through a numerical example. The experimental results indicate that the proposed technique’s reduced order model provides an excellent close approximation to the original system.


2020 ◽  
Author(s):  
Farid N. Najm

<div>We start with a detailed review of the PACT approach for model order reduction of RC networks. We then develop a method that uses PACT as a preprocessing step to transform a generic lumped RC transmission line of some nominal order, based on a nominal (r,c) setting, into a parameterized circuit captured in a SPICE sub-circuit description. Then, given any other lumped RC line of the same order, we pass its (r,c) setting as parameters to this sub-circuit so as to automatically transform and reduce the line into a reduced order model without having to rerun PACT. In this way, we effectively characterize lumped RC transmission lines in a way that allows them to be reduced on-the-fly without any expensive processing.</div>


2012 ◽  
Vol 503 ◽  
pp. 260-265
Author(s):  
Le Guan ◽  
Jia Li Gao ◽  
Zhi Wen Wang ◽  
Guo Qing Zhang ◽  
Jin Kui Chu

A refined approach producing MEMS numerical macromodels is proposed in this paper by generating the iterative Krylov subspace using a refined Arnoldi algorithm, which can reduce the degrees of freedom of the original system equations described by the state space method. Projection of the original system matrix onto the Krylov subspace which is spanned by a refined Arnoldi algorithm is still based on the transfer function moment matching principle. The idea of the iterative version is to expect that a new initial vector will contain more and more information on the required eigenvectors that is called refined vector. The refined approach improves approximation accuracy of the system matrix eigenvalues equivalent to a more accurate approximation to the poles of the system transfer function, obtaining a more accurate reduced-order model. The clamped beam model and the FOM model are reduced order by classical Arnoldi and refined Arnoldi algorithm in numerical experiments. From the computing result it is concluded that the refined Arnoldi algorithm based Krylov subspace technique for MEMS model order reduction has more accuracy and reaches lower order number of reduced order model than the classical Arnoldi process.


2021 ◽  
Author(s):  
Ram Kumar ◽  
Afzal Sikander

Abstract The Coulomb and Franklin laws (CFL) algorithm is used to construct a lower order model of higher-order continuous time linear time-invariant (LTI) systems in this study. CFL is quite easy to implement in obtaining reduced order model of large scale system in control engineering problem as it employs the combined effect of Coulomb’s and Franklin’s laws to find the best values in search space. The unknown coefficients are obtained using the CFLA methodology, which minimises the integral square error (ISE) between the original and proposed ROMs. To achieve the reduced order model, five practical systems of different orders are considered. Finally, multiple performance indicators such as the ISE, integral of absolute error (IAE), and integral of time multiplied by absolute error were calculated to determine the efficacy of the proposed methodology. The simulation results were compared to previously published well-known research.


Sign in / Sign up

Export Citation Format

Share Document