scholarly journals Increased Arm Swing and Rocky Surfaces Reduces Postural Control in Healthy Young Adults

Author(s):  
Cezar Mezher ◽  
Tarique Siragy ◽  
Julie Nantel

Fall-induced injuries can stem from a disruption in the postural control system and place a financial burden on the healthcare system. Most gait research focused on lower extremities and neglected the contribution of arm swing, which have been shown to affect the movement of the center of mass when walking. This study evaluated the effect of arm swing on postural control and stability during regular and rocky surface walking. Fifteen healthy young adults (age = 23.4 ± 2.8) walked on these two surfaces with three arm motions (normal, held, and active) using the CAREN Extended-System (Motek Medical, Amsterdam, NL). Mean, standard deviation and maximal values of trunk linear and angular velocity were calculated in all three axes. Moreover, step length, time and width mean and coefficient of variation as well as margin of stability mean and standard deviation were calculated. Active arm swing increased trunk linear and angular velocity variability and peak values compared to normal and held arm conditions. Active arm swing also increased participants’ step length and step time, as well as the variability of margin of stability. Similarly, rocky surface walking increased trunk kinematics variability and peak values compared to regular surface walking. Furthermore, rocky surface increased the average step width while reducing the average step time. Though this surface type increased the coefficient of variation of all spatiotemporal parameters, rocky surface also led to increased margin of stability mean and variation. The spatiotemporal adaptations showed the use of “cautious” gait to mitigate the destabilizing effects of both the active arm swing and rocky surface walking and, ultimately, maintain dynamic stability.

2018 ◽  
Author(s):  
Yoshiro Okubo ◽  
Matthew A Brodie ◽  
Daina L Sturnieks ◽  
Cameron Hicks ◽  
Hilary Carter ◽  
...  

AbstractINTRODUCTIONThis study aimed to determine if repeated exposure to unpredictable trips and slips while walking can improve balance recovery responses when predictive gait alterations (e.g. slowing down) are minimised.METHODSTen young adults walked on a 10-m walkway that induced slips and trips in fixed and random locations. Participants were exposed to a total of 12 slips, 12 trips and 6 non-perturbed walks in three conditions: 1) right leg fixed location, 2) left leg fixed location and 3) random leg and location. Kinematics during non-perturbed walks and previous and recovery steps were analysed.RESULTSThroughout the three conditions, participants walked with similar gait speed, step length and cadence(p>0.05). Participants’ extrapolated centre of mass (XCoM) was anteriorly shifted immediately before slips at the fixed location (p<0.01), but this predictive gait alteration did not transfer to random perturbation locations. Improved balance recovery from trips in the random location was indicated by increased margin of stability and step length during recovery steps (p<0.05). Changes in balance recovery from slips in the random location was shown by reduced backward XCoM displacement and reduced slip speed during recovery steps (p<0.05).CONCLUSIONSEven in the absence of most predictive gait alterations, balance recovery responses to trips and slips were improved through exposure to repeated unpredictable perturbations. A common predictive gait alteration to lean forward immediately before a slip was not useful when the perturbation location was unpredictable. Training balance recovery with unpredictable perturbations may be beneficial to fall avoidance in everyday life.


Author(s):  
Kento Sabashi ◽  
Satoshi Kasahara ◽  
Harukazu Tohyama ◽  
Takeshi Chiba ◽  
Yuta Koshino ◽  
...  

BACKGROUND: Knee osteoarthritis (OA) impairs postural control and may be affected by how the lower limb joints are used. OBJECTIVE: To investigate how individuals with knee OA use lower limb joints for static postural control. METHODS: Ten patients with knee OA and thirteen healthy controls performed quiet standing for 30 s. The standard deviation of the center of mass (COM) and lower limb joint motions in the anterior-posterior (AP) and medial-lateral (ML) planes were calculated from three-dimensional marker trajectories. Pearson’s correlation analysis and independent t-tests were conducted to investigate the relationship between COM and lower limb joint motion and to compare group difference, respectively. RESULTS: The AP hip angular velocity alone in the knee OA group and the AP hip and knee angular velocity in the control group were significantly correlated with the AP COM velocity. The ML hip angular velocity was significantly correlated with the ML COM velocity in both groups. The knee OA group exhibited a significantly larger standard deviation of AP COM velocity than the control group. CONCLUSIONS: Individuals with knee OA depended solely on the contribution of the hip to the AP COM velocity, which could not be successfully controlled by the knee.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249303
Author(s):  
Tarique Siragy ◽  
Allen Hill ◽  
Julie Nantel

The arm elevation strategy assists in recovering stability during slips in healthy young and elderly individuals. However, in people with Parkinson’s Disease, one of the main motor symptoms affecting the upper limbs is reduced arm swing which intensifies throughout the course of the disease before becoming absent. This holds direct implications for these individuals when encountering slips as the arm elevation strategy is an integral component in the interlimb slip response to restore stability. Arm swing’s effect in recovering from slips in people with Parkinson’s Disease though remains unexamined. Twenty people with Parkinson’s Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing conditions on a dual-belt treadmill where slips were induced on the least and most affected sides. Data were collected on the CAREN Extended System (Motek Medical, Amsterdam, NL). The Margin of Stability, linear and angular trunk velocities, as well as step length, time, and width were calculated. Data were examined during the slipped step and recovery step. The restricted arm swing condition, compared to unrestricted, caused a faster step time during the slipped step. Compared to the most affected leg, the least affected had a wider step width during the slipped step. During the recovery step, the least affected leg had a larger anteroposterior Margin of Stability and longer step time than the most affected. No differences between our arm swing conditions suggests that the normal arm swing in our participants was not more effective at restoring stability after an induced slip compared to when their arm motion was restricted. This may be due to the arm elevation strategy being ineffective in counteracting the slip’s backward destabilization in these individuals. Differences between the legs revealed that our participants were asymmetrically impaired in their slip recovery response.


Author(s):  
Alison Pienciak-Siewert ◽  
Alaa A Ahmed

How does the brain coordinate concurrent adaptation of arm movements and standing posture? From previous studies, the postural control system can use information about previously adapted arm movement dynamics to plan appropriate postural control; however, it is unclear whether postural control can be adapted and controlled independently of arm control. The present study addresses that question. Subjects practiced planar reaching movements while standing and grasping the handle of a robotic arm, which generated a force field to create novel perturbations. Subjects were divided into two groups, for which perturbations were introduced in either an abrupt or gradual manner. All subjects adapted to the perturbations while reaching with their dominant (right) arm, then switched to reaching with their non-dominant (left) arm. Previous studies of seated reaching movements showed that abrupt perturbation introduction led to transfer of learning between arms, but gradual introduction did not. Interestingly, in this study neither group showed evidence of transferring adapted control of arm or posture between arms. These results suggest primarily that adapted postural control cannot be transferred independently of arm control in this task paradigm. In other words, whole-body postural movement planning related to a concurrent arm task is dependent on information about arm dynamics. Finally, we found that subjects were able to adapt to the gradual perturbation while experiencing very small errors, suggesting that both error size and consistency play a role in driving motor adaptation.


2017 ◽  
Vol 47 (11) ◽  
Author(s):  
Marcos André Braz Vaz ◽  
Paulo Santana Pacheco ◽  
Enio Júnior Seidel ◽  
Angela Pellegrin Ansuj

ABSTRACT: This research was conducted to propose a classification of the coefficient of variation (CV%) in many categories of variables of production and carcass of beef cattle experiments. The data was collected from theses and dissertations. We used the methods of classification considering mean and standard deviation, and considering median and pseudo-sigma. The two methods showed similar results so both can be used to classify CV%. We propose only three categories to rank CV%: low, medium and high.


2019 ◽  
Vol 83 ◽  
pp. 214-220 ◽  
Author(s):  
Patrice R. Rougier ◽  
Dominic Perennou

Sign in / Sign up

Export Citation Format

Share Document