scholarly journals Hysteretic–Viscous Hybrid Damper System for Long-Period Pulse-Type Earthquake Ground Motions of Large Amplitude

Author(s):  
Shoki Hashizume ◽  
Izuru Takewaki
2018 ◽  
Vol 30 (1) ◽  
pp. 16-31 ◽  
Author(s):  
Ramin Rabiee ◽  
Yunbyeong Chae

Base isolation system is widely used to protect important and essential buildings from seismic hazards. The use of high damping is effective in reducing the resonance effect under long-period earthquake ground motions. However, high damping increases the acceleration demand under short-period ground motions, leading to a higher risk of damage of nonstructural components. Actually, low damping is beneficial to reduce the acceleration demand under short-period ground motions, suggesting the use of adaptive damping control, that is, high damping under long-period motions and low damping under short-period motions. In order to implement this concept, a semi-actively controlled base isolation system is provided in this article along with a new control law based on the transmissibility theory. Unlike existing studies, the proposed method enables a systematic design procedure for base isolated structures with semi-active dampers, which is called the simplified design procedure in this article. The performance of the proposed system is evaluated with numerical simulations for a base isolated three-story building with magneto-rheological dampers. It was shown that the proposed system achieves a high level of performance under long-period ground motions, while maintaining the exceptional performance of a conventional base isolation system with low damping under short-period ground motions.


2007 ◽  
Vol 23 (2) ◽  
pp. 357-392 ◽  
Author(s):  
Nicolas Luco ◽  
C. Allin Cornell

Introduced in this paper are several alternative ground-motion intensity measures ( IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the “efficiency” and “sufficiency” of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


Sign in / Sign up

Export Citation Format

Share Document