scholarly journals Mitochondrial Metabolism in the Intestinal Stem Cell Niche—Sensing and Signaling in Health and Disease

Author(s):  
Elisabeth Urbauer ◽  
Eva Rath ◽  
Dirk Haller

Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism. Thus, mitochondrial function emerges at the interface of determining health and disease, and failure to adapt mitochondrial function to environmental cues potentially results in aberrant tissue responses. A mechanistic understanding of the underlying role of mitochondrial fitness in intestinal pathologies is still in its infancy, and therapies targeting mitochondrial (dys)function are currently lacking. This review discusses mitochondrial signaling and metabolism in intestinal stem cells and Paneth cells as critical junction translating host- and microbe-derived signals into epithelial responses. Consequently, we propose mitochondrial fitness as a hallmark for intestinal epithelial cell plasticity, determining the regenerative capacity of the epithelium.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mara Martín-Alonso ◽  
Sharif Iqbal ◽  
Pia M. Vornewald ◽  
Håvard T. Lindholm ◽  
Mirjam J. Damen ◽  
...  

AbstractSmooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.


2021 ◽  
Author(s):  
Wesley Tung ◽  
Ullas Valiya Chembazhi ◽  
Jing Yang ◽  
Ka Lam Nguyen ◽  
Aryan Lalwani ◽  
...  

Properly controlled intestinal epithelial cell regeneration is not only vital for protection against insults from environmental hazards but also crucial for preventing intestinal cancer. Intestinal stem cells located in the crypt region provide the driving force for epithelial regeneration, and thus their survival and death must be precisely regulated. We show here that polypyrimidine tract binding protein 1 (PTBP1, also called heterogeneous nuclear ribonucleoprotein I, or HNRNP I), an RNA-binding protein that post-transcriptionally regulates gene expression, is critical for intestinal stem cell survival and stemness. Mechanistically, we show that PTBP1 inhibits the expression of PHLDA3, an AKT repressor, and thereby maintains AKT activity in the intestinal stem cell compartment to promote stem cell survival and proliferation. Furthermore, we show that PTBP1 inhibits the expression of PTBP2, a paralog of PTBP1 that is known to induce neuron differentiation, through repressing inclusion of alternative exon 10 to Ptbp2 transcript. Loss of PTBP1 results in a significant upregulation of PTBP2, which is accompanied by splicing changes in genes that are important for neuron cell development. This finding suggests that PTBP1 prevents aberrant differentiation of intestinal stem cells into neuronal cells through inhibiting PTBP2. Our results thus reveal a novel mechanism whereby PTBP1 maintains intestinal stem cell survival and stemness through the control of gene function post-transcriptionally.


2013 ◽  
Vol 144 (5) ◽  
pp. S-833
Author(s):  
Eva Martini ◽  
Nadine Wittkopf ◽  
Claudia Günther ◽  
Hitoshi Okada ◽  
Markus FF Neurath ◽  
...  

Oncogene ◽  
2016 ◽  
Vol 35 (22) ◽  
pp. 2948-2948 ◽  
Author(s):  
A-L Joly ◽  
A Deepti ◽  
A Seignez ◽  
A Goloudina ◽  
S Hebrard ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 156-170 ◽  
Author(s):  
Natacha Bohin ◽  
Theresa M. Keeley ◽  
Alexis J. Carulli ◽  
Emily M. Walker ◽  
Elizabeth A. Carlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document