scholarly journals Mitochondria Endoplasmic Reticulum Contact Sites (MERCs): Proximity Ligation Assay as a Tool to Study Organelle Interaction

Author(s):  
Sara Benhammouda ◽  
Anjali Vishwakarma ◽  
Priya Gatti ◽  
Marc Germain

Organelles cooperate with each other to regulate vital cellular homoeostatic functions. This occurs through the formation of close connections through membrane contact sites. Mitochondria-Endoplasmic-Reticulum (ER) contact sites (MERCS) are one of such contact sites that regulate numerous biological processes by controlling calcium and metabolic homeostasis. However, the extent to which contact sites shape cellular biology and the underlying mechanisms remain to be fully elucidated. A number of biochemical and imaging approaches have been established to address these questions, resulting in the identification of a number of molecular tethers between mitochondria and the ER. Among these techniques, fluorescence-based imaging is widely used, including analysing signal overlap between two organelles and more selective techniques such as in-situ proximity ligation assay (PLA). While these two techniques allow the detection of endogenous proteins, preventing some problems associated with techniques relying on overexpression (FRET, split fluorescence probes), they come with their own issues. In addition, proper image analysis is required to minimise potential artefacts associated with these methods. In this review, we discuss the protocols and outline the limitations of fluorescence-based approaches used to assess MERCs using endogenous proteins.

Contact ◽  
2019 ◽  
Vol 2 ◽  
pp. 251525641984864 ◽  
Author(s):  
Alexa Bishop ◽  
Maki Kamoshita ◽  
Josiah B. Passmore ◽  
Christian Hacker ◽  
Tina A. Schrader ◽  
...  

Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate extensively in lipid-related metabolic pathways, and the ER also provides phospholipids to enable the peroxisomal membrane to expand prior to division. Recently, we identified peroxisomal proteins, ACBD5 and ACBD4, and the ER protein vesicle-associated membrane protein-associated protein-B (VAPB) as tethering components, which physically interact to foster PO–ER associations at membrane contact sites. Overexpression or loss of these tether proteins alters the extent of PO–ER interactions, impacting on lipid exchange between these two compartments. To facilitate further studies into PO–ER associations at the level of membrane contact sites, their role, composition, and regulation, we have developed two fluorescence-based systems to monitor PO–ER interactions. We modified a proximity ligation assay and a split-fluorescence reporter system using split superfolder green fluorescent protein. Using the proximity ligation assay, we were able to measure the changes in PO–ER interactions while the split-fluorescence reporter was more limited and only allowed us to label PO–ER contacts. We show that both techniques can be useful additions to the toolkit of methods to study PO–ER associations and explore the relative merits of each.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110265
Author(s):  
Vladimir Zhemkov ◽  
Jen Liou ◽  
Ilya Bezprozvanny

Recent studies indicated potential importance of membrane contact sites (MCS) between the endoplasmic reticulum (ER) and other cellular organelles. These MCS have unique protein and lipid composition and serve as hubs for inter-organelle communication and signaling. Despite extensive investigation of MCS protein composition and functional roles, little is known about the process of MCS formation. In this perspective, we propose a hypothesis that MCS are formed not as a result of random interactions between membranes of ER and other organelles but on the basis of pre-existing cholesterol-enriched ER microdomains.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641881462
Author(s):  
Samantha K. Dziurdzik ◽  
Björn D.M. Bean ◽  
Elizabeth Conibear

Membrane contact sites are regulated through the controlled recruitment of constituent proteins. Yeast vacuolar protein sorting 13 (Vps13) dynamically localizes to membrane contact sites at endosomes, vacuoles, mitochondria, and the endoplasmic reticulum under different cellular conditions and is recruited to the prospore membrane during meiosis. Prior to our recent work, the mechanism for localization at contact sites was largely unknown. We identified Ypt35 as a novel Vps13 adaptor for endosomes and the nucleus-vacuole junction. Furthermore, we discovered a conserved recruitment motif in Ypt35 and found related motifs in the prospore membrane and mitochondrial adaptors, Spo71 and Mcp1, respectively. All three adaptors compete for binding to a six-repeat region of Vps13, suggesting adaptor competition regulates Vps13 localization. Here, we summarize and discuss the implications of our work, highlighting key outstanding questions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dorian V. Ziegler ◽  
Nadine Martin ◽  
David Bernard

AbstractMembrane contact sites emerged in the last decade as key players in the integration, regulation and transmission of many signals within cells, with critical impact in multiple pathophysiological contexts. Numerous studies accordingly point to a role for mitochondria-endoplasmic reticulum contacts (MERCs) in modulating aging. Nonetheless, the driving cellular mechanisms behind this role remain unclear. Recent evidence unravelled that MERCs regulate cellular senescence, a state of permanent proliferation arrest associated with a pro-inflammatory secretome, which could mediate MERC impact on aging. Here we discuss this idea in light of recent advances supporting an interplay between MERCs, cellular senescence and aging.


2017 ◽  
Vol 36 (10) ◽  
pp. 1412-1433 ◽  
Author(s):  
Léa P Wilhelm ◽  
Corinne Wendling ◽  
Benoît Védie ◽  
Toshihide Kobayashi ◽  
Marie‐Pierre Chenard ◽  
...  

2018 ◽  
Vol 115 (31) ◽  
pp. E7331-E7340 ◽  
Author(s):  
Ben Johnson ◽  
Ashley N. Leek ◽  
Laura Solé ◽  
Emily E. Maverick ◽  
Tim P. Levine ◽  
...  

Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.


2018 ◽  
Vol 178 (2) ◽  
pp. 641-653 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Kentaro Tamura ◽  
Haruko Ueda ◽  
Yoko Ito ◽  
Akihiko Nakano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document