scholarly journals Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies

Author(s):  
Inna Serganova ◽  
Sanjukta Chakraborty ◽  
Samuel Yamshon ◽  
Yusuke Isshiki ◽  
Ryan Bucktrout ◽  
...  

B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.

Oncotarget ◽  
2015 ◽  
Vol 6 (18) ◽  
pp. 16471-16487 ◽  
Author(s):  
Murielle Grégoire ◽  
Fabien Guilloton ◽  
Céline Pangault ◽  
Frédéric Mourcin ◽  
Phaktra Sok ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3817-3825 ◽  
Author(s):  
Stanislaw Krajewski ◽  
Randy D. Gascoyne ◽  
Juan M. Zapata ◽  
Maryla Krajewska ◽  
Shinichi Kitada ◽  
...  

Immunohistochemical analysis of the apoptosis-effector protease CPP32 (Caspase-3) in normal lymph nodes, tonsils, and nodes affected with reactive hyperplasia (n = 22) showed strong immunoreactivity in the apoptosis-prone germinal center B-lymphocytes of secondary follicles, but little or no reactivity in the surrounding long-lived mantle zone lymphocytes. Immunoblot analysis of fluorescence-activated cell sorted germinal center and mantle zone B cells supported the immunohistochemical results. In 22 of 27 (81%) follicular small cleaved cell non-Hodgkin's B-cell lymphomas, the CPP32-immunopositive germinal center lymphocytes were replaced by CPP32-negative tumor cells. In contrast, the large cell component of follicular mixed cells (FMs) and follicular large cell lymphomas (FLCLs) was strongly CPP32 immunopositive in 12 of 17 (71%) and in 8 of 14 (57%) cases, respectively, whereas the residual small-cleaved cells were poorly stained for CPP32 in all FLCLs and in 12 of 17 (71%) FMs, suggesting that an upregulation of CPP32 immunoreactivity occurred during progression. Similarly, cytosolic immunostaining for CPP32 was present in 10 of 12 (83%) diffuse large cell lymphomas (DLCLs) and 2 of 3 diffuse mixed B-cell lymphomas (DMs). Immunopositivity for CPP32 was also found in the majority of other types of non-Hodgkin's lymphomas studied. Plasmacytomas were CPP32 immunonegative in 4 of 12 (33%) cases, in contrast to normal plasma cells, which uniformly contained intense CPP32 immunoreactivity, implying downregulation of CPP32 in a subset of these malignancies. All 12 peripheral blood B-cell chronic lymphocyte leukemia specimens examined were CPP32 immunopositive, whereas 3 of 3 small lymphocytic lymphomas were CPP32 negative, suggesting that CPP32 expression may vary depending on the tissue compartment in which these neoplastic B cells reside. The results show dynamic regulation of CPP32 expression in normal and malignant lymphocytes.


2011 ◽  
Vol 45 (6) ◽  
pp. 589
Author(s):  
Kyueng-Whan Min ◽  
Young-Ha Oh ◽  
Chan-Kum Park ◽  
So-Dug Lim ◽  
Wan-Seop Kim

2015 ◽  
Vol 5 (5) ◽  
pp. e317-e317
Author(s):  
R Wagener ◽  
M Lenz ◽  
B Schuldt ◽  
I Lenz ◽  
A Schuppert ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3817-3825 ◽  
Author(s):  
Stanislaw Krajewski ◽  
Randy D. Gascoyne ◽  
Juan M. Zapata ◽  
Maryla Krajewska ◽  
Shinichi Kitada ◽  
...  

Abstract Immunohistochemical analysis of the apoptosis-effector protease CPP32 (Caspase-3) in normal lymph nodes, tonsils, and nodes affected with reactive hyperplasia (n = 22) showed strong immunoreactivity in the apoptosis-prone germinal center B-lymphocytes of secondary follicles, but little or no reactivity in the surrounding long-lived mantle zone lymphocytes. Immunoblot analysis of fluorescence-activated cell sorted germinal center and mantle zone B cells supported the immunohistochemical results. In 22 of 27 (81%) follicular small cleaved cell non-Hodgkin's B-cell lymphomas, the CPP32-immunopositive germinal center lymphocytes were replaced by CPP32-negative tumor cells. In contrast, the large cell component of follicular mixed cells (FMs) and follicular large cell lymphomas (FLCLs) was strongly CPP32 immunopositive in 12 of 17 (71%) and in 8 of 14 (57%) cases, respectively, whereas the residual small-cleaved cells were poorly stained for CPP32 in all FLCLs and in 12 of 17 (71%) FMs, suggesting that an upregulation of CPP32 immunoreactivity occurred during progression. Similarly, cytosolic immunostaining for CPP32 was present in 10 of 12 (83%) diffuse large cell lymphomas (DLCLs) and 2 of 3 diffuse mixed B-cell lymphomas (DMs). Immunopositivity for CPP32 was also found in the majority of other types of non-Hodgkin's lymphomas studied. Plasmacytomas were CPP32 immunonegative in 4 of 12 (33%) cases, in contrast to normal plasma cells, which uniformly contained intense CPP32 immunoreactivity, implying downregulation of CPP32 in a subset of these malignancies. All 12 peripheral blood B-cell chronic lymphocyte leukemia specimens examined were CPP32 immunopositive, whereas 3 of 3 small lymphocytic lymphomas were CPP32 negative, suggesting that CPP32 expression may vary depending on the tissue compartment in which these neoplastic B cells reside. The results show dynamic regulation of CPP32 expression in normal and malignant lymphocytes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4630-4630
Author(s):  
Marion Travert ◽  
Patricia Ame-Thomas ◽  
Thierry Fest ◽  
Céline Pangault ◽  
Gilbert Semana ◽  
...  

Abstract Follicular lymphoma are characterized by the rearrangement of the bcl-2 gene, present in more than 90% of patients. Over-expression of the bcl-2 protein resulting from this translocation is associated with the inability to eradicate the lymphoma, by inhibiting apoptosis. Despite the median survival ranges from 8 to 15 years, leading to the designation of indolent lymphoma, patients with advanced-stage follicular lymphoma are not cured with current therapeutic options. Numerous reports have shown that Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in a wide variety of transformed cell lines of diverse lineage, but does not appear to kill normal cells, even though TRAIL mRNA is expressed at significant levels in most normal tissues. As cell death induced by TRAIL occurs almost exclusively in tumor cells, it suggests that this drug is safe to use as an antitumor therapy. We therefore investigated the efficiency of this cytokine to induce apoptosis in germinal center derived B cell lymphoma, despite bcl-2 over-expression. Our study was also designed to evaluate the role of CD40L, one of the main differentiation signal involved in B cell maturation during the germinal center reaction, on the regulation of TRAIL-induced apoptosis. This study was performed on three germinal center derived tumor cell lines (BL2, VAL and RL), and on normal and tumor primary cells obtained from human tonsils and lymph nodes. Our data show that normal B lymphocytes obtained from tonsil biopsies are resistant to TRAIL-mediated apoptosis, when B lymphoma cells issued from lymph node of numerous patients are significantly sensitive to the cytokine. When we treat these lymphoma cells with trimeric huCD40L, we partly rescue these cells from spontaneous apoptosis which naturally occurs after few days of culture, and reverse by 50% TRAIL-mediated apoptosis when cells were co-treated with huCD40L for 16 hours. Similar results were reproduced on some germinal center derived cell lines. BL2 was indeed found highly sensitive to TRAIL-induced apoptosis following a 24 hour exposure. On the opposite, VAL and RL were almost insensitive. We have demonstrate that apoptosis is exclusively mediated by TRAIL-R1 in BL2. Analysis of signalling pathways revealed that the protection to TRAIL-induced apoptosis by CD40L is due to some specific anti-apoptotic molecules that will be described. Genes encoding these molecules are targets of the NFκB signalling pathway activated by CD40L. Our results suggest that activation of NFκB and induction of anti-apoptotic molecules by CD40L play an important role in the protection of germinal center derived B cell lymphomas against apoptosis. Then, NFκB inhibitors may be wise to use in clinical trials in conjunction with TRAIL against follicular lymphomas.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4308-4308
Author(s):  
Shin-ichiro Fujiwara ◽  
Raine Tatara ◽  
Kiyoshi Okazuka ◽  
Iekuni Oh ◽  
Ken Ohmine ◽  
...  

Abstract Background Interleukin 2 (IL-2) is an important cytokine that controls the proliferation and differentiation of not only T- but also B-lymphocytes. Recently, we reported that CD25 (IL-2 receptor alpha chain, IL-2R) is expressed in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), and high expression of CD25 in the two types of lymphoma is correlated with a poor prognosis following chemotherapy regimens containing rituximab (ASH annual meeting, 2011 118:2666, 2012 120:1543). We evaluated the clinical significance of CD25 expression in a larger series of different mature B-cell lymphomas (BCL). Patients and Methods Four hundred and thirty-seven newly diagnosed patients who were admitted to our hospital between 2002 and 2013 were retrospectively evaluated. Lymph node or related tissue biopsy samples of BCL were analyzed using flow cytometry, as follows: 182 patients, DLBCL; 92, FL; 48, chronic lymphocytic leukemia (CLL); 21, mantle cell lymphoma (MCL); 23, marginal zone lymphoma (MZL); 8, Burkitt lymphoma (BL); 18, B-cell lymphoma unclassifiable with features intermediate between BL and DLBCL (BL/DLBCL); 5, lymphoplasmacytic lymphoma (LPL); and 39, reactive lymphadenopathy with sufficient B-cells. CD25-positivity was defined as >20% of clonal B-cells in a gated region. Results CD25 expression in patients with MCL, CLL, MZL, and DLBCL was significantly higher than that in patients with reactive lymphadenopathy (P<0.001,<0.001, =0.019, and <0.001, respectively). BL and FL, which were derived from germinal center B-cells, did not express CD25. These results indicate that pre- or post- germinal center-derived B-cells, activated by IL-2/IL-2R signaling, may give rise to CD25+ BCL such as CD25+ MCL, CLL, MZL, and DLBCL. The highest median CD25 expression (41.5%) was observed in MCL. CD25 expression was higher in MCL than CD5+ BCL (CLL and CD5+ DLBCL) (median, 41.5 vs. 16.9%, respectively; P<0.001). With a cut-off value of 60% CD25-positivity, patients with CD25-high (>60%) MCL (n=9) were not treated with aggressive chemotherapy regimens such as Hyper-CVAD due to their age and characteristics, compared with those with CD25-low (<60%) MCL (n=12) (11.1 vs. 72.7%, respectively, P=0.021). In patients with CLL, the range of CD25 expression was wide (0.4-90.7%), and 29 patients (60%) showed CD25-positivity (CD25+ CLL). CD25+ CLL showed higher soluble IL-2R (sIL-2R) levels and an inferior overall survival (OS) than CD25- CLL (median sIL-2R, 2,195 vs. 706 U/ml P=0.047; 5-year OS, 62.7 vs. 100%; P=0.037). There was a significant correlation between levels of CD25 and sIL-2R (r=0.53, P=0.0053). It is clinically important to distinguish between DLBCL and BCL involving MYC oncogene rearrangement (BL and BL/DLBCL, MYC+ BCL). The former showed higher CD25 expression than the latter (median, 10.2 vs. 2.1%, respectively, P=0.04). The progression-free survival rate (PFS) after rituximab containing chemotherapy was inferior in patients with CD25+ DLBCL (n=72) than those with CD25- DLBCL (n=110) and MYC+ BCL (5-year PFS, 49 vs. 70.4, 66.3%, respectively). In patients with DLBCL, central nerve system (CNS) involvement was observed in 15 patients (7 at diagnosis and 8 at relapse). CD25+ DLBCL showed a higher frequency of CNS involvement than CD25– DLBCL (13.8 vs. 4.5%, respectively, P=0.049). Regarding MZL, CD25 was highly expressed in nodal MZL, but it showed a low expression in splenic MZL. Regarding the sites of extranodal MZL, CD25 expression was lower in the thyroid than at other sites (median, 5.1 vs. 21.2%, respectively, P=0.37). There were some differences between CD25+ (n=9) and CD25- (n=14) MZL concerning the presence of B symptoms (33.3 vs. 0%, respectively) and advanced stage (66.6 vs. 35.7%, respectively). Conclusion CD25 expression using flow cytometry can potentially provide diagnostic and prognostic implications on BCL patient. The high expression of CD25 in MCL and CLL suggests the possibility of targeted anti-CD25 immunotherapy. These findings may shed light on the role of CD25 expression in B-cell lymphomagenesis. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 21 (6) ◽  
pp. 653-659 ◽  
Author(s):  
Xiuyan Xie ◽  
Uma Sundram ◽  
Yaso Natkunam ◽  
Sabine Kohler ◽  
Richard T Hoppe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document