chromatin modifiers
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Samuel Thudium ◽  
Katherine C Palozola ◽  
Eloise L'Her ◽  
Erica Korb

Epigenetic regulation plays a critical role in many neurodevelopmental disorders, including Autism Spectrum Disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin modifying proteins. However, while these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined 5 chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted Ash1L, Chd8, Crebbp, Ehmt1, and Nsd1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The downregulated transcriptional signature is also observed within multiple mouse models of neurodevelopmental disorders that result in ASD, but not those only associated with intellectual disability. Finally, the downregulated transcriptional signature can distinguish between neurons generated from iPSCs derived from healthy donors and idiopathic ASD patients through RNA-deconvolution, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2665
Author(s):  
Aswathy Paul ◽  
Madhavan Pillai ◽  
Rakesh Kumar

To broaden the understanding of the epigenomic and chromatin regulation of cervical cancer, we examined the status and significance of a set of epigenomic and chromatin modifiers in cervical cancer using computational biology. We observed that 61 of 917 epigenomic and/or chromatin regulators are differentially upregulated in human cancer, including 25 upregulated in invasive squamous cell carcinomas and 29 in cervical intraepithelial neoplasia 3 (CIN3), of which 14 are upregulated in cervical intraepithelial neoplasia 2 (CIN2). Interestingly, 57 of such regulators are uniquely upregulated in cervical cancer, but not ovarian and endometrial cancers. The observed overexpression of 57 regulators was found to have a prognostic significance in cervical cancer. The collective overexpression of these regulators, as well as its subsets belonging to specific histone modifications and corresponding top ten positively co-overexpressed genes, correlated with reduced survival of patients with high expressions of the tested overexpressed regulators compared to cases with low expressions. Using cell-dependency datasets from human cervical cancer cells, we found that 20 out of 57 epigenomic and chromatin regulators studied here appeared to be essential genes, as the depletion of these genes was accompanied by the loss in cellular viability. In brief, the results presented here provide further insights into the role of epigenomic and chromatin regulators in the oncobiology of cervical cancer and broaden the list of new potential molecules of therapeutic importance.


Author(s):  
Maxime Galloy ◽  
Catherine Lachance ◽  
Xue Cheng ◽  
Félix Distéfano-Gagné ◽  
Jacques Côté ◽  
...  

The modification of histones—the structural components of chromatin—is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.


2021 ◽  
Vol 22 (16) ◽  
pp. 8850
Author(s):  
Sidrit Uruci ◽  
Calvin Shun Yu Lo ◽  
David Wheeler ◽  
Nitika Taneja

Since their discovery, R-loops have been associated with both physiological and pathological functions that are conserved across species. R-loops are a source of replication stress and genome instability, as seen in neurodegenerative disorders and cancer. In response, cells have evolved pathways to prevent R-loop accumulation as well as to resolve them. A growing body of evidence correlates R-loop accumulation with changes in the epigenetic landscape. However, the role of chromatin modification and remodeling in R-loops homeostasis remains unclear. This review covers various mechanisms precluding R-loop accumulation and highlights the role of chromatin modifiers and remodelers in facilitating timely R-loop resolution. We also discuss the enigmatic role of RNA:DNA hybrids in facilitating DNA repair, epigenetic landscape and the potential role of replication fork preservation pathways, active fork stability and stalled fork protection pathways, in avoiding replication-transcription conflicts. Finally, we discuss the potential role of several Chro-Mates (chromatin modifiers and remodelers) in the likely differentiation between persistent/detrimental R-loops and transient/benign R-loops that assist in various physiological processes relevant for therapeutic interventions.


2021 ◽  
Vol 22 (16) ◽  
pp. 8597
Author(s):  
Ilka Wilhelmi ◽  
Alexander Neumann ◽  
Markus Jähnert ◽  
Meriem Ouni ◽  
Annette Schürmann

Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.


2021 ◽  
pp. 1-21
Author(s):  
Andrew D. Nelson ◽  
Kevin J. Bender

Neurodevelopmental disorders (NDDs) that affect cognition, social interaction, and learning, including autism spectrum disorder (ASD) and intellectual disability (ID), have a strong genetic component. Our current understanding of risk genes highlights two main groups of dysfunction: those in genes that act as chromatin modifiers and those in genes that encode for proteins localized at or near synapses. Understanding how dysfunction in these genes contributes to phenotypes observed in ASD and ID remains a major question in neuroscience. In this review, we highlight emerging evidence suggesting that dysfunction in dendrites – regions of neurons that receive synaptic input – may be key to understanding features of neuronal processing affected in these disorders. Dendritic integration plays a fundamental role in sensory processing, cognition, and conscious perception, processes hypothesized to be impaired in NDDs. Many high-confidence ASD genes function within dendrites where they control synaptic integration and dendritic excitability. Further, increasing evidence demonstrates that several ASD/ID genes, including chromatin modifiers and transcription factors, regulate the expression or scaffolding of dendritic ion channels, receptors, and synaptic proteins. Therefore, we discuss how dysfunction of subsets of NDD-associated genes in dendrites leads to defects in dendritic integration and excitability and may be one core phenotype in ASD and ID.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Farrona ◽  
Iva Mozgová ◽  
Rafal Archacki ◽  
Juan Armando Casas-Mollano
Keyword(s):  

2021 ◽  
Vol 27 (4) ◽  
pp. 365-378
Author(s):  
Brian W. Basinski ◽  
Daniel A. Balikov ◽  
Michael Aksu ◽  
Qiang Li ◽  
Rajesh C. Rao

Acta Naturae ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 16-30
Author(s):  
Marina Yu. Mazina ◽  
Nadezhda E. Vorobyeva

Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/complexes i.e., pioneers; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the pause of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.


Author(s):  
Luigi Aloia

The adult liver has excellent regenerative potential following injury. In contrast to other organs of the body that have high cellular turnover during homeostasis (e.g., intestine, stomach, and skin), the adult liver is a slowly self-renewing organ and does not contain a defined stem-cell compartment that maintains homeostasis. However, tissue damage induces significant proliferation across the liver and can trigger cell-fate changes, such as trans-differentiation and de-differentiation into liver progenitors, which contribute to efficient tissue regeneration and restoration of liver functions. Epigenetic mechanisms have been shown to regulate cell-fate decisions in both embryonic and adult tissues in response to environmental cues. Underlying their relevance in liver biology, expression levels and epigenetic activity of chromatin modifiers are often altered in chronic liver disease and liver cancer. In this review, I examine the role of several chromatin modifiers in the regulation of cell-fate changes that determine efficient adult liver epithelial regeneration in response to tissue injury in mouse models. Specifically, I focus on epigenetic mechanisms such as chromatin remodelling, DNA methylation and hydroxymethylation, and histone methylation and deacetylation. Finally, I address how altered epigenetic mechanisms and the interplay between epigenetics and metabolism may contribute to the initiation and progression of liver disease and cancer.


Sign in / Sign up

Export Citation Format

Share Document