scholarly journals Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation

2014 ◽  
Vol 2 ◽  
Author(s):  
Jean-Michel Lavoie
2021 ◽  
Vol 333 ◽  
pp. 06002
Author(s):  
Intan Clarissa Sophiana ◽  
Tri Partono Adhi ◽  
Yogi Wibisono Budhi

The Natuna gas field is one of the largest natural gas reserves in Indonesia with estimated natural gas reserves of 222 TCF. However, until now, the use of Natuna gas is still hampered because of the very high CO2 content reaching 71%, while the methane content is around 28%. The dry reforming of methane (DRM) process is one of the potential ways to be applied for solving these problems to convert CH4 and CO2 to synthesis gas containing CO and H2 as a raw material that can be applied to manufacture as intermediate products or end products in the petrochemical industry such as acetic acid. The simulation of the acetic acid production was conducted by using ASPEN HYSYS v.10, considering mass and heat balances. The PengRobinson was applied for dry reforming of methane process. In order to produce 496.8 kmol/h of the acetic acid, the 500 kmol/h for each CH4 and CO2 were used as feed gas. The total energy required is 4.7 MMBtu per ton of acetic acid. The acetic acid has a purity of 99.4% with a concentration of 500 ppm methanol, and moisture content of 5,700 ppm.


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Afiq Zubir ◽  
Nurfanizan Afandi ◽  
Abreeza Manap ◽  
Awaluddin Abdul Hamid ◽  
Bamidele Victor Ayodele ◽  
...  

Several industrial activities often result in the emissions of greenhouse gases such as carbon dioxide and methane (a principal component of natural gas). In order to mitigate the effects of these greenhouse gases, CO2 can be captured, stored and utilized for the dry reforming of methane. Various CO2 capture techniques have been investigated in the past decades. This study investigated the performance and process modeling of CO2 capture through calcium carbonate looping (CCL) using local (Malaysia) limestone as the sorbent. The original limestone was compared with two types of oxalic acid-treated limestone, with and without aluminum oxide (Al2O3) as supporting material. The comparison was in terms of CO2 uptake capacity and performance in a fluidized bed reactor system. From the results, it was shown that the oxalic acid-treated limestone without Al2O3 had the largest surface area, highest CO2 uptake capacity and highest mass attrition resistance, compared with other sorbents. The sorbent kinetic study was used to design, using an Aspen Plus simulator, a CCL process that was integrated with a 700 MWe coal-fired power plant from Malaysia. The findings showed that, with added capital and operation costs due to the CCL process, the specific CO2 emission of the existing plant was significantly reduced from 909 to 99.7 kg/MWh.


2014 ◽  
Vol 86 (11) ◽  
pp. 1855-1870 ◽  
Author(s):  
Joris W. Thybaut ◽  
Guy B. Marin ◽  
Claude Mirodatos ◽  
Yves Schuurman ◽  
Andre C. van Veen ◽  
...  

2019 ◽  
Vol 59 (11) ◽  
pp. 1256-1263
Author(s):  
R. R. Grigoryan ◽  
S. G. Aloyan ◽  
V. R. Harutyunyan ◽  
S. D. Arsentev ◽  
L. A. Tavadyan

2021 ◽  
Vol 44 ◽  
pp. 101411
Author(s):  
Nicolas Abdel Karim Aramouni ◽  
Joseph Zeaiter ◽  
Witold Kwapinski ◽  
James J. Leahy ◽  
Mohammad N. Ahmad

2021 ◽  
pp. 100021
Author(s):  
Sangwook Joo ◽  
Chaehyun Lim ◽  
Ohhun Kwon ◽  
Linjuan Zhang ◽  
Jing Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document