molybdenum nitride
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 69)

H-INDEX

44
(FIVE YEARS 9)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Paweł Adamski ◽  
Wojciech Czerwonko ◽  
Dariusz Moszyński

The application of cobalt molybdenum nitrides as ammonia synthesis catalysts requires further development of the optimal promoter system, which enhances not only the activity but also the stability of the catalysts. To do so, elucidating the influence of the addition of alkali metals on the structural properties of the catalysts is essential. In this study, potassium-promoted cobalt molybdenum nitrides were synthesized by impregnation of the precursor CoMoO4·3/4H2O with aqueous KNO3 solution followed by ammonolysis. The catalysts were characterized with the use of XRD and BET methods, under two conditions: as obtained and after the thermal stability test. The catalytic activity in the synthesis of ammonia was examined at 450 °C, under 10 MPa. The thermal stability test was carried out by heating at 650 °C in the same apparatus. As a result of ammonolysis, mixtures of two phases: Co3Mo3N and Co2Mo3N were obtained. The phase concentrations were affected by potassium admixture. The catalytical activity increased for the most active catalyst by approximately 50% compared to non-promoted cobalt molybdenum nitrides. The thermal stability test resulted in a loss of activity, on average, of 30%. Deactivation was caused by the collapse of the porous structure, which is attributed to the conversion of the Co2Mo3N phase to the Co3Mo3N phase.


2022 ◽  
Author(s):  
Takayuki Itabashi ◽  
Kazuya Arashiba ◽  
Shogo Kuriyama ◽  
Yoshiaki Nishibayashi

A molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation...


Author(s):  
Takayuki Itabashi ◽  
Kazuya Arashiba ◽  
Hiromasa Tanaka ◽  
Kazunari Yoshizawa ◽  
Yoshiaki Nishibayashi

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lili Lin ◽  
Jinjia Liu ◽  
Xi Liu ◽  
Zirui Gao ◽  
Ning Rui ◽  
...  

AbstractReversing the thermal induced sintering phenomenon and forming high temperature stable fine dispersed metallic centers with unique structural and electronic properties is one of the ever-lasting targets of heterogeneous catalysis. Here we report that the dispersion of metallic Ni particles into under-coordinated two-dimensional Ni clusters over γ-Mo2N is a thermodynamically favorable process based on the AIMD simulation. A Ni-4nm/γ-Mo2N model catalyst is synthesized and used to further study the reverse sintering effect by the combination of multiple in-situ characterization methods, including in-situ quick XANES and EXAFS, ambient pressure XPS and environmental SE/STEM etc. The under-coordinated two-dimensional layered Ni clusters on molybdenum nitride support generated from the Ni-4nm/γ-Mo2N has been demonstrated to be a thermally stable catalyst in 50 h stability test in CO2 hydrogenation, and exhibits a remarkable catalytic selectivity reverse compared with traditional Ni particles-based catalyst, leading to a chemo-specific CO2 hydrogenation to CO.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1415
Author(s):  
Martin Fenker ◽  
Martin Balzer ◽  
Sabine Kellner ◽  
Tomas Polcar ◽  
Andreas Richter ◽  
...  

The coating system MoN-Ag is an interesting candidate for industrial applications as a low friction coating at elevated temperatures, due to the formation of lubricous molybdenum oxides and silver molybdates. Film deposition was performed by high-power impulse magnetron sputtering and direct current magnetron sputtering. To facilitate a future transfer to industry Mo-Ag composite targets have been sputtered in Ar/N2 atmosphere. The chemical composition of the deposited MoN-Ag films has been investigated by wavelength dispersive X-ray spectroscopy. Morphology and crystallographic phases of the films were studied by scanning electron microscopy and X-ray diffraction. To obtain film hardness in relation to Ag content and bias voltage, the instrumented indentation test was applied. Pin-on-disc tribological tests have been performed at room temperature and at high temperature (HT, 450 °C). Samples from HT tests have been analyzed by Raman measurements to identify possible molybdenum oxide and/or silver molybdate phases. At low Ag contents (≤7 at.%), coatings with a hardness of 18–31 GPa could be deposited. Friction coefficients at HT decreased with increasing Ag content. After these tests, Raman measurements revealed the MoO3 phase on all samples and the Ag2Mo4O13 phase for the highest Ag contents (~23–26 at.%).


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
W. Schulz ◽  
F. Köhn ◽  
D. Kolb ◽  
M. Balzer ◽  
H. Riegel ◽  
...  

AbstractThis study considers anisotropic microstructures with typical dimensions of a few 10 µm which have been created on steel surfaces by laser surface texturing (LST). It is shown that the subsequent deposition of thin molybdenum nitride coatings by high-power impulse magnetron sputtering (HiPIMS) leads to surfaces that conserve the surface microstructures and exhibit a remarkably large resistance against mechanical wear. Tribological experiments with steel counter bodies are substantially influenced by the relative orientation of the structures and the wear track. Both friction and wear are shown to be modified by more than 30%, with the main effect being the removal of abrasion particles from the mechanical contact. Experiments with alumina counter bodies that hardly provide wear particles show that the orientation has no effect on the abrasion of the counter body. The novelty of the article lies in the combination of MoN coatings with surface texturing.


Sign in / Sign up

Export Citation Format

Share Document