scholarly journals A Chemical Potential Equation for Modeling Triboelectrochemical Reactions on Solid–Liquid Interfaces

2021 ◽  
Vol 9 ◽  
Author(s):  
Chenxu Liu ◽  
Yu Tian ◽  
Yonggang Meng

Triboelectrochemical reactions occur on solid–liquid interfaces in wide range of applications when an electric field strong enough and a frictional stress high enough are simultaneously imposed on the interfaces. A characteristic of triboelectrochemical reactions is that not only the thermal energy but also the electrical and mechanical energies can activate, assist, or mitigate the solid–liquid interface chemical reactions, the products of which affect electrical and tribological behavior of the interfaces inversely. In previous studies, we have found that the coupling of frictional and electric effects could physically change the migration, adsorption, and desorption behaviors of the polar molecules, ions, or charged particles included in aqueous or nonaqueous base lubricant toward or away from the interfaces and thus control the boundary lubrication. Recently, we have found that the friction coefficient and surface appearance of some kinds of metals could also be modulated to some extent even in pure water or pure base oils under external electric stimulations. We attribute these changes to the triboelectrochemical reactions occurred when a strong external electric field is imposed on. Based on the effective collision model of chemical reactions, a chemical potential equation, which includes both electrical and mechanical contributions, has been derived. The proposed chemical potential equation can be used to explain the observed triboelectrochemical phenomenon in experiments. Based on the model, a novel method for oxidation coloring of the selected areas in metal surfaces is proposed. Together with the physical adsorption and desorption model of lubricant additives, the triboelectrochemical reaction model can well explain the phenomena of potential-controlled boundary lubrication in different lubrication systems and also provides a theoretical basis for other solid–liquid interface processes under the effects of electromechanical coupling.

2020 ◽  
Vol 10 (16) ◽  
pp. 5362-5385
Author(s):  
Leila Negahdar ◽  
Christopher M. A. Parlett ◽  
Mark A. Isaacs ◽  
Andrew M. Beale ◽  
Karen Wilson ◽  
...  

Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.


Author(s):  
J. M. Howe

A number of different theoretical approaches have been used to model the atomic structure and properties of solid-liquid interfaces. Most calculations indicate that ordering occurs in the first several layers of the liquid, adjacent to the crystal surface. In contrast to the numerous theoretical investigations, there have been no direct experimental observations of the atomic structure of a solid-liquid interface for comparison. Saka et al. examined solid-liquid interfaces in In and In-Sb at lattice-fringe resolution in the TEM, but their data do not reveal information about the atomic structure of the liquid phase. The purpose of this study is to determine the atomic structure of a solid-liquid interface using a highly viscous supercooled liquid, i.e., a crystal-amorphous interface.


2014 ◽  
Vol 126 (49) ◽  
pp. 13613-13617 ◽  
Author(s):  
Qing-Na Zheng ◽  
Xuan-He Liu ◽  
Xing-Rui Liu ◽  
Ting Chen ◽  
Hui-Juan Yan ◽  
...  

2014 ◽  
Vol 53 (49) ◽  
pp. 13395-13399 ◽  
Author(s):  
Qing-Na Zheng ◽  
Xuan-He Liu ◽  
Xing-Rui Liu ◽  
Ting Chen ◽  
Hui-Juan Yan ◽  
...  

Previous work with columnar castings of lead has shown that there exists a connexion between the solidification texture and the morphologies of the decanted freezing interfaces. This has been explained in terms of crystal growth from the melt by the extension of relatively large (one micron) steps or platelets which are visible on many decanted interfaces. The present work consists of an examination of preferred orientations and interface morphologies in castings of lead and of metals having structures other than face-centred cubic. Metal castings have been prepared in which the orientations of columnar grains could be correlated directly with the morphologies of the corresponding decanted solid/liquid interfaces. Experiments have been carried out with lead, zinc, magnesium, tin, bismuth and a β-brass alloy, and except in the last case, the morphologies of the freezing interfaces were controlled by varying the purities of the metals for given conditions of casting. Except in the case of tin the preferred orientations are determined by the morphologies of the freezing interfaces. The results can be satisfactorily explained if the mechanism of crystal growth is one of edgewise extension of closely packed planes in directions lying close to the plane of the actual solid/liquid interface. The origin of the platelet structure on decanted interfaces is discussed, and the appearances of decanted interfaces are compared with structures visible on the free surfaces of rapidly frozen metal sheets. It is suggested that there may be some connection between the platelet formation on decanted interfaces and those seen on the solid/gaseous interfaces, and that the existence of a residual liquid layer over the freshly decanted surfaces might give rise to a structure which is not typical of the original solid/liquid interface. The thickness of this residual liquid film is ~20 μm, but under the conditions of these experiments the liquid freezes in less time than is. required for the nucleation of new grain structures or even of eutectic lamellae. It is concluded that decanted surfaces are probably an approximate representation of the true solid/liquid interfaces, but that it is uncertain how far this is true of the platelet structure.


1985 ◽  
Vol 63 ◽  
Author(s):  
B. B. Laird ◽  
A. D. J. Haymet

ABSTRACTWe present the results of computer simulations of body centered cubic (bcc)/melt interfaces, with particular emphasis on the “width” of the interface. Both static and dynamic properties of single crystal/liquid interfaces are examined. The implications for crystal growth near equilibrium are discussed. The results of these computer “experiments” are compared with an extended density functional theory of the solid-liquid interface.


1970 ◽  
Vol 48 (5) ◽  
pp. 865-866 ◽  
Author(s):  
A. C. Lowe ◽  
A. C. Riddiford

Studies of the advancing contact angle of water upon several alkylchlorosilaned glass surfaces at 22 °C lead to the view that, at zero or very low interfacial velocities, the free energy per unit area of the solid/liquid interface is governed by both dispersive and polar forces. At higher velocities, the polar forces may be neglected.


Sign in / Sign up

Export Citation Format

Share Document