scholarly journals Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome

Author(s):  
Lin Xiao ◽  
Qin Liu ◽  
Mei Luo ◽  
Lishou Xiong

Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut microbiota alterations, and dysfunction of the brain-gut axis; however, its pathophysiology remains poorly understood. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. The aim of our study was to investigate specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the pathogenesis of IBS. Metabolites-focused research has identified multiple microbial targets relevant to IBS patients, important roles of microbiota-derived metabolites in the development of IBS symptoms have been established. Thus, we provide an overview of gut microbiota and their metabolites on the different subtypes of IBS (constipation-predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views regarding the role of microbiota in IBS.

2003 ◽  
Vol 8 (4) ◽  
pp. 88-98
Author(s):  
G Eileen Rossouw ◽  
Anita D Stuart ◽  
H Gertie Pretorius

Irritable Bowel Syndrome (IBS) is defined as a chronic relapsing functional bowel disorder of unknown causes which is characterised by attacks of abdominal pain and change of bowel habit resulting in diarrhoea or constipation or both. Opsomming Prikkelbare Dermsindroom (PDS) word gedefinieer as ’n chroniese, herhalende, funksionele ingewandsversteuring wat gekenmerk word deur aanvalle van buikpyn en ‘n verandering in ingewandsgewoontes, wat diarree of hardlywigheid, of beide, tot gevolg het. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.


2018 ◽  
Vol 2 ◽  
Author(s):  
Akram Abolbaghaei ◽  
B. Dave Oomah ◽  
Hamed Tavakoli ◽  
Farah Hosseinian

Circulating levels of branched chain amino acids (BCAAs) correlate strongly with type 2 diabetes (T2D). The correlation may be associated with insulin-resistance factors independent of glycemic markers currently used in the diagnosis and monitoring of diabetes. This can revolutionize the thought process and methodology not only in diabetes treatment, but also in its advance screening and prevention with BCAAs used as biomarkers and targets for treatment. Whether insulin resistance is the cause or result of BCAAs imbalances requires further investigation. Although the overall diet is important, the role of specific diets targeting the gut microbiome composition and hormone secretion affecting BCAA absorption and metabolism will be explored. Generic diet modifications apparently induce only negligible changes in the intrinsic genetic make-up of the gut and BCAA levels but influence specific modulation of the gut microbiome. This genetic make-up is indeed similar among T2D patients independent of numerous variables including obesity. Short-chain fatty acids (SCFAs), the primary end-products of non-digestible carbohydrates (NDC) fermentation, mediate metabolic imbalances through gut microbiota and gut hormone secretion. This review focuses on extensive evidence gathered using diverse methodologies on the strong parallel correlation between BCAA levels and insulin resistance. Furthermore, the role of specific diets particularly SCFAs as mediators of the stubbornly fixed intrinsic genetic make-up of gut microbiota will be scrutinized to delineate BCAA levels and insulin resistance in T2D.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2018 ◽  
Vol 25 (32) ◽  
pp. 3930-3952 ◽  
Author(s):  
Roberto Russo ◽  
Claudia Cristiano ◽  
Carmen Avagliano ◽  
Carmen De Caro ◽  
Giovanna La Rana ◽  
...  

The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer’s Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. Their effective role has been studied in inflammation, acute and chronic pain, obesity and central nervous system diseases. A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.


Sign in / Sign up

Export Citation Format

Share Document