scholarly journals Novel Approaches in Cardiac Imaging for Non-invasive Assessment of Left Heart Myocardial Fibrosis

2021 ◽  
Vol 8 ◽  
Author(s):  
Giulia Elena Mandoli ◽  
Flavio D'Ascenzi ◽  
Giulia Vinco ◽  
Giovanni Benfari ◽  
Fabrizio Ricci ◽  
...  

In the past, the identification of myocardial fibrosis was only possible through invasive histologic assessment. Although endomyocardial biopsy remains the gold standard, recent advances in cardiac imaging techniques have enabled non-invasive tissue characterization of the myocardium, which has also provided valuable insights into specific disease processes. The diagnostic accuracy, incremental yield and prognostic value of speckle tracking echocardiography, late gadolinium enhancement and parametric mapping modules by cardiac magnetic resonance and cardiac computed tomography have been validated against tissue samples and tested in broad patient populations, overall providing relevant clinical information to the cardiologist. This review describes the patterns of left ventricular and left atrial fibrosis, and their characterization by advanced echocardiography, cardiac magnetic resonance and cardiac computed tomography, allowing for clinical applications in sudden cardiac death and management of atrial fibrillation.

2019 ◽  
pp. 113-133
Author(s):  
Giancarlo Vitrella ◽  
Giorgio Faganello ◽  
Gaetano Morea ◽  
Lorenzo Pagnan ◽  
Manuel Belgrano ◽  
...  

Author(s):  
Zsofia Dohy ◽  
Liliana Szabo ◽  
Attila Toth ◽  
Csilla Czimbalmos ◽  
Rebeka Horvath ◽  
...  

AbstractThe prognosis of patients with hypertrophic cardiomyopathy (HCM) varies greatly. Cardiac magnetic resonance (CMR) is the gold standard method for assessing left ventricular (LV) mass and volumes. Myocardial fibrosis can be noninvasively detected using CMR. Moreover, feature-tracking (FT) strain analysis provides information about LV deformation. We aimed to investigate the prognostic significance of standard CMR parameters, myocardial fibrosis, and LV strain parameters in HCM patients. We investigated 187 HCM patients who underwent CMR with late gadolinium enhancement and were followed up. LV mass (LVM) was evaluated with the exclusion and inclusion of the trabeculae and papillary muscles (TPM). Global LV strain parameters and mechanical dispersion (MD) were calculated. Myocardial fibrosis was quantified. The combined endpoint of our study was all-cause mortality, heart transplantation, malignant ventricular arrhythmias and appropriate implantable cardioverter defibrillator (ICD) therapy. The arrhythmia endpoint was malignant ventricular arrhythmias and appropriate ICD therapy. The LVM index (LVMi) was an independent CMR predictor of the combined endpoint independent of the quantification method (p < 0.01). The univariate predictors of the combined endpoint were LVMi, global longitudinal (GLS) and radial strain and longitudinal MD (MDL). The univariate predictors of arrhythmia events included LVMi and myocardial fibrosis. More pronounced LV hypertrophy was associated with impaired GLS and increased MDL. More extensive myocardial fibrosis correlated with impaired GLS (p < 0.001). LVMi was an independent CMR predictor of major events, and myocardial fibrosis predicted arrhythmia events in HCM patients. FT strain analysis provided additional information for risk stratification in HCM patients.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pedro V Staziaki ◽  
Hoshang Farhad ◽  
Otávio Coelho-Filho ◽  
Ravi V Shah ◽  
Richard N Mitchell ◽  
...  

Introduction: Anthracyclines are a standard chemotherapeutic agent. However, the anthracyclines are associated with a late reduction in left ventricular ejection fraction (LVEF) and heart failure. Pathologically, anthracycline-induced cardiotoxicity (AIC) is characterized by the development of cardiac edema and fibrosis and cardiac magnetic resonance (CMR) is the gold-standard imaging technique for edema and fibrosis. Hypothesis: We hypothesized that a) cardiac edema and fibrosis would be detected by CMR after anthracyclines and b) edema and fibrosis would provide prognostic information. Methods: We performed a longitudinal CMR and histological study of 45 wild-type mice randomized to doxorubicin (DOX, n=30, 5 mg/kg/week for 5 weeks) or placebo (n=15). Measurements were performed at baseline, 5, 10, and 20 weeks after DOX or placebo. Measures of interest were LVEF, myocardial edema and fibrosis. Edema was assessed by T2 mapping, fibrosis by calculating the extracellular volume (ECV) from pre- and post-contrast T1 measurements. Results: In DOX-treated mice vs. placebo, myocardial edema at 5 weeks was increased (T2 values of 32±4 vs. 21±3 ms, P<0.05, Fig. A), while LVEF was unchanged. At 10 weeks, there was a reduction in LVEF (54±6 vs. 63±5% μL, P<0.05) and an increase in myocardial fibrosis (ECV of 0.34±0.03 vs. 0.27±0.03, P<0.05, Fig. B). There was a correlation between T2 measures and cardiac water weight (r=0.79, P=0.007, Fig. C) and between the ECV and histological myocardial fibrosis (r=0.90, P<0.001; Fig. D). Both the early increase in edema and the sub-acute increase in fibrosis predicted the late DOX-induced mortality (P<0.001, Fig. E and F). Conclusions: Our data suggest that, in mice, CMR can detect the early increase in edema and sub-acute increase in fibrosis after anthracyclines, that an increase in edema precedes a reduction in LVEF, that the increase in edema and fibrosis are linked and both are predictive of late animal mortality.


Author(s):  
Raphael Rosenhek

The workup of patients with aortic regurgitation is routinely based on echocardiography and includes a detailed morphologic assessment of the aortic valve with the determination of disease aetiology. The quantification of aortic regurgitation is based on an integration of qualitative and quantitative parameters. Haemodynamic consequences of aortic valve disease on left ventricular size, hypertrophy, and function, as well as potentially coexisting valve lesions, are assessed. Predictors of outcome and indications for surgery are substantially defined by echocardiographic parameters. Cardiac magnetic resonance has become an important complementary technique, both for the quantification of regurgitant severity and for the assessment of ventricular function. While the proximal parts of the ascending aorta are routinely visualized by transthoracic echocardiography, transoesophageal echocardiography (TOE) and in particular cardiac magnetic resonance (CMR) and cardiac computed tomography (CT) allow a more comprehensive assessment of the thoracic aorta.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
G Zucchelli ◽  
D Soto Iglesias ◽  
B Jauregui ◽  
C Teres ◽  
D Penela ◽  
...  

Abstract Background Cardiac magnetic resonance (CMR)-aided ventricular tachycardia (VT) substrate ablation has shown to improve VT recurrence-free survival, through a better identification of the arrhythmogenic substrate. However, the access to CMR may be limited in certain centers or sometimes Its use can be contraindicated in patients with cardiac implantable electronic device. Cardiac computed tomography (CT) has shown to improve the results of substrate ablation, correlating with low-voltage areas and local abnormal ventricular activity, and identifying ridges of myocardial tissue (CT-channels) that may be appropriate target sites for ablation. Purpose To evaluate the correlation between CT and CMR imaging in identifying anatomical heterogeneous tissue channels (CMR-channels) or CT-channels in ischemic patients undergoing VT substrate ablation. Methods The study included 30 post-myocardial infarction (MI) patients (mean age 69±10; 94% male, left ventricular ejection fraction 35±10%), who underwent both CMR and cardiac CT before VT substrate ablation. Using a dedicated post-processing software, the myocardium was segmented in 10 layers from endocardium to epicardium both for the CMR and CT, characterizing the presence of CMR-channels and CT-channels, respectively, by two blinded operators, assigned either to CMR or CT analysis. CMR-channels were classified as endocardial (CMR-channels in layer <50%), epicardial (CMR-channels in layers ≥50%) or transmural (in both endo and epicardial layers). Presence and location of CT and CMR-channels were compared. Results In 26/30 patients (86.7%) 91 CT-channels (mean 3.0±1.9 per patient) were identified while 30/30 (100%) showed CMR-channels (n=76; mean 2.4±1.2 per patient). We found 190 CT-channel entrances (mean 6.3±4.1 per patient), and 275 CMR-channel entrances (mean 8.9±4.9 per patient) on cardiac CT and CMR, respectively. There were 47/91 (51.6%) true positive CT-channels. On the contrary, 44/91 (48.4%) CT-channels were considered false positives [19/91 (20.9%) identified out of CMR scar], and 29/76 (38.2%) CMR-channels could not be identified on CT. Thirty-six out of 76 (47.4%) CMR-channels were considered as non-endocardial (epi- or transmural). Twenty-nine out of 36 (80.5%) non-endocardial CMR-channels were coincident with CT-channels. CT and CMR Channels Conclusion CT shows a modest sensitivity in identifying CMR-channels and fails in ascertain their complexity, underestimating the number of entrances; however, channels location at CT fit well with CMR for those classified as transmural or epicardial.


Sign in / Sign up

Export Citation Format

Share Document