scholarly journals Harnessing the Potential of Human Pluripotent Stem Cell-Derived Motor Neurons for Drug Discovery in Amyotrophic Lateral Sclerosis: From the Clinic to the Laboratory and Back to the Patient

2021 ◽  
Vol 1 ◽  
Author(s):  
Nuno Jorge Lamas ◽  
Laurent Roybon

Amyotrophic Lateral Sclerosis (ALS) is a motor neurodegenerative disorder whose cellular hallmarks are the progressive death of motor neurons (MNs) located in the anterior horn of the spinal cord, brainstem and motor cortex, and the formation of intracellular protein aggregates. Over the course of the disease, progressive paralysis takes place, leading to patient death within 3–5 years after the diagnosis. Despite decades of intensive research, only a few therapeutic options exist, with a limited benefit on the disease progression. Preclinical animal models have been very useful to decipher some aspects of the mechanisms underlying ALS. However, discoveries made using transgenic animal models have failed to translate into clinically meaningful therapeutic strategies. Thus, there is an urgent need to find solutions to discover drugs that could impact on the course of the disease, with the ultimate goal to extend the life of patients and improve their quality of life. Induced pluripotent stem cells (iPSCs), similarly to embryonic stem cells (ESCs), have the capacity to differentiate into all three embryonic germ layers, which offers the unprecedented opportunity to access patient-specific central nervous system cells in an inexhaustible manner. Human MNs generated from ALS patient iPSCs are an exciting tool for disease modelling and drug discovery projects, since they display ALS-specific phenotypes. Here, we attempted to review almost 2 decades of research in the field, first highlighting the steps required to efficiently generate MNs from human ESCs and iPSCs. Then, we address relevant ALS studies which employed human ESCs and iPSC-derived MNs that led to the identification of compounds currently being tested in clinical trials for ALS. Finally, we discuss the potential and caveats of using patient iPSC-derived MNs as a platform for drug screening, and anticipate ongoing and future challenges in ALS drug discovery.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Disi An ◽  
Ryosuke Fujiki ◽  
Dylan E Iannitelli ◽  
John W Smerdon ◽  
Shuvadeep Maity ◽  
...  

In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.


2019 ◽  
Author(s):  
Disi An ◽  
Ryosuke Fujiki ◽  
Dylan E. Iannitelli ◽  
John W. Smerdon ◽  
Shuvadeep Maity ◽  
...  

SummaryIn amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.


Acta Naturae ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 54-60 ◽  
Author(s):  
I. V. Chestkov ◽  
E. A. Vasilieva ◽  
S. N. Illarioshkin ◽  
M. A. Lagarkova ◽  
S. L. Kiselev

The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited, and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons.


2018 ◽  
Vol 27 (9) ◽  
pp. 1301-1312 ◽  
Author(s):  
Jui-Hao Lee ◽  
Jen-Wei Liu ◽  
Shinn-Zong Lin ◽  
Horng-Jyh Harn ◽  
Tzyy-Wen Chiou

Induced pluripotent stem cells (iPSCs), which are generated through reprogramming adult somatic cells by expressing specific transcription factors, can differentiate into derivatives of the three embryonic germ layers and accelerate rapid advances in stem cell research. Neurological diseases such as amyotrophic lateral sclerosis (ALS) have benefited enormously from iPSC technology. This approach can be particularly important for creating iPSCs from patients with familial or sporadic forms of ALS. Motor neurons differentiated from the ALS-patient-derived iPSC can help to determine the relationship between cellular phenotype and genotype. Patient-derived iPSCs facilitate the development of new drugs and/or drug screening for ALS treatment and allow the exploration of the possible mechanism of ALS disease. In this article, we reviewed ALS-patient-specific iPSCs with various genetic mutations, progress in drug development for ALS disease, functional assays showing the differentiation of iPSCs into mature motor neurons, and promising biomarkers in ALS patients for the evaluation of drug candidates.


2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Oihane Pikatza-Menoio ◽  
Amaia Elicegui ◽  
Xabier Bengoetxea ◽  
Neia Naldaiz-Gastesi ◽  
Adolfo López de Munain ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.


2015 ◽  
Vol 77 (3-4) ◽  
Author(s):  
B. Chandrasoma ◽  
D. Balfe ◽  
T. Naik ◽  
A. Elsayegh ◽  
M. Lewis ◽  
...  

Background. Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder affecting both the upper and lower motor neurons. Deteriorating pulmonary function as a reflection of progressive respiratory muscle weakness is a common feature, accounting for the majority of deaths. The aim of the study was to describe a trend in initial pulmonary function tests (PFT) of Amyotrophic Lateral Sclerosis (ALS) patients, in addition, differentiating between the types of disease onset, bulbar, limb muscle, and a combination. Methods. Initial PFT were gathered from 32 consecutive patients in our clinic with the diagnosis of ALS, they were categorized by the type of disease onset. Values obtained were referenced to the 95% confidence limits for normality. Results. There was evidence of significant reductions in both the FEV1 (64.7% predicted) and FVC (61.2%), with preservation of the FEV1/FVC (81.7%). The MVV was significantly reduced(43%). Total lung capacity was 93.2%, the residual volumes was increased at 145.7%. Subgroup analysis failed to show significant differences between types of disease onset. In the bulbar onset group (versus the limb group) there was a trend for the MVV to be further reduced (p=0.15) and the RV to be higher (157.4% versus 135.9%, P=0.24). Conclusions. ALS is a devastating disease that invariably leads to respiratory failure. Abnormal spirometric variables such as the FVC and MVV, likely reflect inspiratory muscle weakness and increased RV likely reflect expiratory muscle weakness. The type of disease onset did not result in a different pattern of PFT abnormalities.


Sign in / Sign up

Export Citation Format

Share Document