scholarly journals Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes

2021 ◽  
Vol 9 ◽  
Author(s):  
Roman Desyatkin ◽  
Nikolai Filippov ◽  
Alexey Desyatkin ◽  
Dmitry Konyushkov ◽  
Sergey Goryachkin

Global warming, which is especially intensive (up to 0.08°C yr−1) in permafrost area of Central Yakutia, has dramatic consequences for scarce arable land resources in this region. In Yedoma landscapes, intense permafrost thawing on arable fields unprotected by forest vegetation transforms the surface microtopography with the formation of residual thermokarst mounds (byllars) of 6–10 m in diameter surrounded by a polygonal network of hollows of 0.3–1.5 m in depth above melting ice wedges. This process also takes place on former croplands abandoned in the recent decades because of socioeconomic reasons. It is accompanied by a significant transformation of the previously highly likely homogeneous soil cover composed of Cambic Turbic Cryosols (Sodic) into differentiated complexes of permafrost-affected Stagnic Cambisols or Calcic Solonetzes (Turbic) on the mounds and Calcic Stagnic Solonetzes (Turbic) in the microlows. Surface soil horizons on the mounds have a strongly to very strongly alkaline reaction (pH 8.5–9.5) and low (<2%) organic carbon content; a wavy line of effervescence is found at a depth of 15–30 cm. Soils in the microlows have a close to neutral reaction in the upper horizons (pH 6.2–7.5); higher organic carbon content (2–3%); more pronounced textural differentiation of the profile with the formation of typical natric Btn and, in some cases, overlying eluvial E horizons; deeper (50–60 cm) line of effervescence; and clear stagnic features in the lower part of the profile. In the case of shallow embedding by ice wedge, the lowermost part of the soil in the microlow is characterized by the low bulk density (1.04 g cm−3) because of the appearance of hollows after thawing of the ice-rich transient layer and melting of the top of ice wedges. This may be indicative of the further soil subsidence in the future and the appearance of initial thermokarst lakes (dyuedya) within the Yedoma terrain with its transformation into the alas type of landscape. Rapid thermokarst-driven development of microtopography followed by differentiation of the soil cover with increasing soil alkalinity on the microhighs and soil textural differentiation and overmoistening of deep layers in the microlows prevents the return of abandoned arable land to agriculture in Yedoma landscapes.

2020 ◽  
Author(s):  
Torben Windirsch ◽  
Guido Grosse ◽  
Mathias Ulrich ◽  
Lutz Schirrmeister ◽  
Alexander N. Fedorov ◽  
...  

Abstract. Permafrost ground is one of the largest repositories of stored terrestrial natural carbon and might become a carbon source with ongoing global warming. In particular, syngenetically frozen ice-rich Yedoma deposits originating from the late Pleistocene store a large amount of carbon. This carbon has not yet become part of the recent carbon cycle. With this study of Yedoma and associated Alas deposits in Central Yakutia we aim to understand the local sediment genesis and its effect on permafrost carbon storage. For this purpose, we investigated the Yukechi Alas area (61.76495° N, 130.46664° E), a thermokarst landscape degrading into Yedoma in Central Yakutia. Two sediment cores (Yedoma upland, 22.35 m depth, and Alas basin, 19.80 m depth) were drilled in 2015. We analyzed for ice content, total carbon and total nitrogen content, total organic carbon content, stable oxygen and hydrogen isotopes, stable carbon isotopes, mass specific magnetic susceptibility, grain size distribution, and radiocarbon ages. Samples taken from both cores were radiocarbon-dated up to 50,000 years before present. The laboratory analyses of both cores revealed very low carbon contents down to several meters depth. Those core parts holding very little to no detectable carbon consist of coarser sandy material estimated to an age between 39,000 and 18,000 years before present. For this period we assume sediment input of organic-poor material. Water isotope data derived from pore ice within the Yedoma core indicate a continuously cold state of the lower core parts, thereby ruling out a potential theory of Holocene influence. In consequence, we conclude that no strong organic matter decomposition took place in the sediments of the Yedoma core until today. In contrast, the Alas core from an adjacent thermokarst basin was strongly disturbed by lake development and permafrost thaw, and accordingly its sediment and carbon characteristics differed from those of the Yedoma core. The Alas core shows homogeneous ice content and the water isotope characteristics of a slightly more decomposed organic material; the findings of very carbon-poor core sections from the Yedoma core can be duplicated. The Yedoma deposition was likely influenced by fluvial regimes in nearby streams and the Lena River shifting with climate. The low carbon content and the clear stratigraphical layering of different sediment types suggest that the Yedoma deposits in the Yukechi area differ from other Yedoma sites regarding carbon stock and sedimentological composition. We conclude that sedimentary composition and deposition regimes of Yedoma may differ significantly within the Yedoma domain. The resulting heterogeneity should be taken into account for upscaling approaches on the Yedoma carbon stock. The Alas core gives clear insights into the future development of Cenral Yakutian Yedoma deposits.


2015 ◽  
Vol 66 (2) ◽  
pp. 57-66 ◽  
Author(s):  
Marcin Świtoniak

Abstract Colluvial soils (in Polish: gleby deluwialne) are an important part of the soil cover in young morainic landscapes of northern Poland. They evolved as a result of the accumulation of eroded material at the foot of the slopes and bottoms of closed depressions. The aim of this study was to determine the systematic position of colluvial soils commonly found in the Chełmno and Brodnica Lake District, northern Poland. Ten soil pits located in different types of landscapes were selected for testing soil properties. The colluvial material is characterized by diversified properties: thickness, particle-size distribution, organic carbon content, color, pH, and base saturation. As a result, the investigated soils represent broad spectrum of typological units according to Polish Soil Classification (2011). Some of them contain epipedons mollic and meet the criteria of colluvial chernozemic soils. They were found mainly on buried black earths in areas with small slope inclinations. Many pedons contain pale colored acidic colluvial material with low base saturation and low organic carbon content and must be classified as other types: arenosols (in Polish: arenosole) or rusty soils (in Polish: gleby rdzawe). These soils occur mostly in areas with intensive relief and overlay the different soil types, including rusty soil and organic soils. They are formed as a result of soils lessivés and rusty soils truncation. An introduction of the additional units of “proper colluvial soils” which have epipedon ochric, and “rusty-colluvial soils” with endopedon sideric to the next edition of Polish Soil Classification would enable a more precise expression of the genesis of these soils in the type rank. Moreover, the definition of chernozemic colluvial soils could be extended to colluvial soils with umbric horizon. Classifying soils derived from colluvial material as soils of other types leads to the disappearance of this units on maps and underestimation of the impact of denudation on the soil cover.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

Author(s):  
Emmanuelle Vaudour ◽  
Cécile Gomez ◽  
Philippe Lagacherie ◽  
Thomas Loiseau ◽  
Nicolas Baghdadi ◽  
...  

2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


Sign in / Sign up

Export Citation Format

Share Document