scholarly journals Northeastern Patagonian Glacier Advances (43°S) Reflect Northward Migration of the Southern Westerlies Towards the End of the Last Glaciation

2021 ◽  
Vol 9 ◽  
Author(s):  
Tancrède P. M. Leger ◽  
Andrew S. Hein ◽  
Daniel Goldberg ◽  
Irene Schimmelpfennig ◽  
Maximillian S. Van Wyk de Vries ◽  
...  

The last glacial termination was a key event during Earth’s Quaternary history that was associated with rapid, high-magnitude environmental and climatic change. Identifying its trigger mechanisms is critical for understanding Earth’s modern climate system over millennial timescales. It has been proposed that latitudinal shifts of the Southern Hemisphere Westerly Wind belt and the coupled Subtropical Front are important components of the changes leading to global deglaciation, making them essential to investigate and reconstruct empirically. The Patagonian Andes are part of the only continental landmass that fully intersects the Southern Westerly Winds, and thus present an opportunity to study their former latitudinal migrations through time and to constrain southern mid-latitude palaeo-climates. Here we use a combination of geomorphological mapping, terrestrial cosmogenic nuclide exposure dating and glacial numerical modelling to reconstruct the late-Last Glacial Maximum (LGM) behaviour and surface mass balance of two mountain glaciers of northeastern Patagonia (43°S, 71°W), the El Loro and Río Comisario palaeo-glaciers. In both valleys, we find geomorphological evidence of glacier advances that occurred after the retreat of the main ice-sheet outlet glacier from its LGM margins. We date the outermost moraine in the El Loro valley to 18.0 ± 1.15 ka. Moreover, a series of moraine-matching simulations were run for both glaciers using a spatially-distributed ice-flow model coupled with a positive degree-day surface mass balance parameterisation. Following a correction for cumulative local surface uplift resulting from glacial isostatic adjustment since ∼18 ka, which we estimate to be ∼130 m, the glacier model suggests that regional mean annual temperatures were between 1.9 and 2.8°C lower than present at around 18.0 ± 1.15 ka, while precipitation was between ∼50 and ∼380% higher than today. Our findings support the proposed equatorward migration of the precipitation-bearing Southern Westerly Wind belt towards the end of the LGM, between ∼19.5 and ∼18 ka, which caused more humid conditions towards the eastern margins of the northern Patagonian Ice Sheet a few centuries ahead of widespread deglaciation across the cordillera.

2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2018 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass as the result of changes in the complex ice-climate interactions that have been driven by global climate change. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission GRACE, surface mass balance (SMB) output of RACMO 2.3, and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. Firstly, in agreement with previous estimates, we find that the rate of mass loss from Greenland observed by GRACE was between −277 and −269 Gt/yr in 2003–2012. This estimate is consistent with the sum of individual contributions: surface mass balance (SMB, around 216 ± 122 Gt/yr) and ice discharge (520 ± 31 Gt/yr), indicating a good performance of the regional climate model. Secondly, we examine the average accelerations of mass anomalies in Greenland over 2003–2012, suggesting that the SMB (−23.3 ± 2.7 Gt/yr2) contributes 75 % to the total acceleration observed by GRACE. The remaining contributions to the mass loss acceleration for entire Greenland are statistically insignificant. Finally and most importantly, this study suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO 2.3 and SNOWPACK). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast (SE) and northwest (NW) parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few Gt) and does not explain the intra-annual differences between the total mass and SMB signals.


2007 ◽  
Vol 1 (1) ◽  
pp. 123-168 ◽  
Author(s):  
X. Fettweis

Abstract. Results from a 28-year simulation (1979–2006) over the Greenland ice sheet (GIS) reveal an increase of the solid precipitation (+0.4±2.5 km3 yr−2) and the run-off (+7.9±3.3 km3 yr−2) of surface melt water. The net effect of these competing factors leads to a significant Surface Mass Balance (SMB) loss rate of −7.2±5.1 km3 yr−2. The contribution of changes in the net water vapour fluxes (+0.02±0.09 km3 yr−2) and rainfall (+0.2±0.2 km3 yr−2) to the SMB variability is negligible. The melt water supply has increased because the GIS surface has been warming up +2.4°C since 1979. Latent heat flux, sensible heat flux and net solar radiation have not varied significantly over the last three decades. However, the simulated downward infra-red flux has increased by 9.3 W m−2 since 1979. The natural climate variability (e.g. the North Atlantic Oscillation) does not explain these changes on the GIS. The recent global warming, due to the greenhouse gas concentration increase induced by the human activities, could be a cause of these changes. The doubling of the surface melt water flux into the ocean over the period 1979–2006 suggests that the overall ice sheet mass balance has been increasingly negative, given the probable meltwater-induced outlet glacier acceleration. This study suggests that an increased melting dominates over an increased accumulation in a warming scenario and that the GIS would likely continue to loose mass in the future. A GIS melting would have an effect on the stability of the thermohaline circulation (THC) and the global sea level rise.


2021 ◽  
Author(s):  
Heiko Goelzer ◽  

<p>The Greenland ice sheet (GrIS) is one of the largest contributors to global mean sea-level rise today and is expected to continue losing mass in the future under increasing Arctic warming. Mass loss in the future is caused by the thinning and retreat of marine-terminating outlet glaciers and to a larger extent by decreasing surface mass balance (SMB) due to increased surface meltwater runoff. In this paper we study the relative importance of changes in SMB and outlet glacier retreat by means of model simulations that have been performed as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). The effect of the two forcing mechanisms can be separated based on a comparison between full projections and single forcing experiments up to year 2100 for a number of ice sheet models, driving General Circulation Models and two forcing scenarios (RCP2.6 and RCP8.5). We can confirm earlier findings for the high forcing scenario that a compensation between the two processes renders the sea-level contribution from the full experiment lower than the sum of the single forcing experiments.</p>


2019 ◽  
Author(s):  
Tobias Zolles ◽  
Andreas Born

Abstract. We investigate the sensitivity of a glacier surface mass and energy balance model using a variance based analysis, for two distinct periods of the last glacial cycle: present day climate and the Last Glacial Maximum (LGM). The results can be summarized in three major findings: The sensitivity towards individual model parameters and parameterizations is neither invariant in space nor in time. The model is most sensitive to uncertainty related to down-welling long-wave radiation. Turbulent latent heat flux has a sizable contribution to the surface mass balance uncertainty in central Greenland today and over the entire ice sheet during the cold climate of the LGM, in spite of its low impact on the overall surface mass balance of the Greenland ice sheet in modern climate. We conclude that quantifying the model sensitivity is very helpful for the subsequent tuning of free model parameters, because it clarifies the relative importance of individual parameters and highlights interactions between them that need to be considered.


2013 ◽  
Vol 35 (5) ◽  
pp. 1155-1174 ◽  
Author(s):  
J. H. van Angelen ◽  
M. R. van den Broeke ◽  
B. Wouters ◽  
J. T. M. Lenaerts

2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


2021 ◽  
Vol 15 (2) ◽  
pp. 571-593
Author(s):  
Marion Donat-Magnin ◽  
Nicolas C. Jourdain ◽  
Christoph Kittel ◽  
Cécile Agosta ◽  
Charles Amory ◽  
...  

Abstract. We present projections of West Antarctic surface mass balance (SMB) and surface melt to 2080–2100 under the RCP8.5 scenario and based on a regional model at 10 km resolution. Our projections are built by adding a CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model-mean seasonal climate-change anomaly to the present-day model boundary conditions. Using an anomaly has the advantage to reduce CMIP5 model biases, and a perfect-model test reveals that our approach captures most characteristics of future changes despite a 16 %–17 % underestimation of projected SMB and melt rates. SMB over the grounded ice sheet in the sector between Getz and Abbot increases from 336 Gt yr−1 in 1989–2009 to 455 Gt yr−1 in 2080–2100, which would reduce the global sea level changing rate by 0.33 mm yr−1. Snowfall indeed increases by 7.4 % ∘C−1 to 8.9 % ∘C−1 of near-surface warming due to increasing saturation water vapour pressure in warmer conditions, reduced sea-ice concentrations, and more marine air intrusion. Ice-shelf surface melt rates increase by an order of magnitude in the 21st century mostly due to higher downward radiation from increased humidity and to reduced albedo in the presence of melting. There is a net production of surface liquid water over eastern ice shelves (Abbot, Cosgrove, and Pine Island) but not over western ice shelves (Thwaites, Crosson, Dotson, and Getz). This is explained by the evolution of the melt-to-snowfall ratio: below a threshold of 0.60 to 0.85 in our simulations, firn air is not entirely depleted by melt water, while entire depletion and net production of surface liquid water occur for higher ratios. This suggests that western ice shelves might remain unaffected by hydrofracturing for more than a century under RCP8.5, while eastern ice shelves have a high potential for hydrofracturing before the end of this century.


Sign in / Sign up

Export Citation Format

Share Document