scholarly journals Integrated Geophysical Evidence for the Middle-Lower Crust Melting of the Songpan-Aba Terrain, NE Tibetan Plateau

2021 ◽  
Vol 9 ◽  
Author(s):  
Chongjin Zhao ◽  
Luolei Zhang ◽  
Peng Yu ◽  
Xi Xu

The Songpan−Aba region is located on the northeastern edge of the Tibetan Plateau. Tectonically, the area is surrounded by the West Qinling orogenic belt in the north, the Longmenshan orogenic belt in the southeast, and the East Kunlun and Sanjiang orogenic belts in the west and southwest, forming a triangle that provides an ideal location to study the crust-mantle structure and deep tectonics of the eastward extrusion of the Tibetan Plateau. In this study, the magnetic and electrical structures of the Songpan−Aba area were investigated by inversion using high-precision magnetic anomaly and magnetotelluric data to obtain the subsurface magnetization inversion intensity and resistivity of Songpan–Aba and adjacent areas. The results revealed a continuous magnetic layer up to 20 km below Songpan–Aba and its surrounding areas in the south, possibly originating from a magma root southwest of the Longmenshan massif. In the West Qinling, Songpan–Aba, and Longmenshan areas, pervasive low-resistance, weakly magnetic, or magnetic layers were identified below 20 km that might be formed from the molten mantle material extruded from the eastern edge of the Tibetan Plateau.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yi-Peng Zhang ◽  
Wen-Jun Zheng ◽  
Wei-Tao Wang ◽  
Yun-Tao Tian ◽  
Renjie Zhou ◽  
...  

Abstract Cenozoic exhumation in the northeastern Tibetan Plateau provides insights into spatial-temporal patterns of crustal shortening, erosion, landscape evolution, and geodynamic drivers in the broad India-Eurasia collision system. The NW-SE trending West Qinling Belt has been a central debate as to when crustal shortening took place. Within the West Qinling Belt, a thick succession of Cretaceous sedimentary rocks has been deformed and exhumed along major basin-bounding thrust faults. We present new apatite (U-Th)/He ages from the hanging wall and footwall of this major thrust. Contrasting thermal histories show that rapid cooling commenced as early as ca. 45 Ma and continued for 15–20 Myr for the hanging wall, whereas the footwall experiences continuous cooling and slow exhumation since the late Mesozoic. We infer that accelerated exhumation was driven by thrusting in response to the northward growth of the Tibetan Plateau during the Eocene (ca. 45–35 Ma) based on regional sedimentological, structural, and thermochronological data.


2008 ◽  
Vol 8 (16) ◽  
pp. 5045-5060 ◽  
Author(s):  
Z. Liu ◽  
D. Liu ◽  
J. Huang ◽  
M. Vaughan ◽  
I. Uno ◽  
...  

Abstract. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP) and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.


2021 ◽  
Vol 18 (2) ◽  
pp. 367-376
Author(s):  
Cheng-long Zhou ◽  
Fan Yang ◽  
Wen Huo ◽  
Ali Mamtimin ◽  
Xing-hua Yang

Phytotaxa ◽  
2018 ◽  
Vol 336 (3) ◽  
pp. 286 ◽  
Author(s):  
HONG-MEI WU ◽  
JIA-QI LUO ◽  
KE WANG ◽  
RUN-CHAO ZHANG ◽  
YI LI ◽  
...  

During field expeditions to the Tibetan Plateau, a collection of an undescribed species with several basidiomes was found. Morphological observation and DNA sequence analyses of the collection revealed a close relationship with Cleistocybe vernalis, the type species of the genus Cleistocybe. Therefore, a new species is proposed for the fungus with full morphological description accompanied by phylogenetic analyses. The discovery of the species extends the reported distribution of the genus from the north of America and Europe to Asia.


Author(s):  
Rui Zhang ◽  
Xiaohao Wei ◽  
Vadim A. Kravchinsky ◽  
Leping Yue ◽  
Yan Zheng ◽  
...  

Author(s):  
Cheryl Colopy

From a remote outpost of global warming, a summons crackles over a two-way radio several times a week: . . . Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! . . . In a little brick building on the lip of a frigid gray lake fifteen thousand feet above sea level, Ram Bahadur Khadka tries to rouse someone at Nepal’s Department of Hydrology and Meteorology in the Babar Mahal district of Kathmandu far below. When he finally succeeds and a voice crackles back to him, he reads off a series of measurements: lake levels, amounts of precipitation. A father and a farmer, Ram Bahadur is up here at this frigid outpost because the world is getting warmer. He and two colleagues rotate duty; usually two of them live here at any given time, in unkempt bachelor quarters near the roof of the world. Mount Everest is three valleys to the east, only about twenty miles as the crow flies. The Tibetan plateau is just over the mountains to the north. The men stay for four months at a stretch before walking down several days to reach a road and board a bus to go home and visit their families. For the past six years each has received five thousand rupees per month from the government—about $70—for his labors. The cold, murky lake some fifty yards away from the post used to be solid ice. Called Tsho Rolpa, it’s at the bottom of the Trakarding Glacier on the border between Tibet and Nepal. The Trakarding has been receding since at least 1960, leaving the lake at its foot. It’s retreating about 200 feet each year. Tsho Rolpa was once just a pond atop the glacier. Now it’s half a kilometer wide and three and a half kilometers long; upward of a hundred million cubic meters of icy water are trapped behind a heap of rock the glacier deposited as it flowed down and then retreated. The Netherlands helped Nepal carve out a trench through that heap of rock to allow some of the lake’s water to drain into the Rolwaling River.


Sign in / Sign up

Export Citation Format

Share Document