Melting Ice Rivers

Author(s):  
Cheryl Colopy

From a remote outpost of global warming, a summons crackles over a two-way radio several times a week: . . . Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! . . . In a little brick building on the lip of a frigid gray lake fifteen thousand feet above sea level, Ram Bahadur Khadka tries to rouse someone at Nepal’s Department of Hydrology and Meteorology in the Babar Mahal district of Kathmandu far below. When he finally succeeds and a voice crackles back to him, he reads off a series of measurements: lake levels, amounts of precipitation. A father and a farmer, Ram Bahadur is up here at this frigid outpost because the world is getting warmer. He and two colleagues rotate duty; usually two of them live here at any given time, in unkempt bachelor quarters near the roof of the world. Mount Everest is three valleys to the east, only about twenty miles as the crow flies. The Tibetan plateau is just over the mountains to the north. The men stay for four months at a stretch before walking down several days to reach a road and board a bus to go home and visit their families. For the past six years each has received five thousand rupees per month from the government—about $70—for his labors. The cold, murky lake some fifty yards away from the post used to be solid ice. Called Tsho Rolpa, it’s at the bottom of the Trakarding Glacier on the border between Tibet and Nepal. The Trakarding has been receding since at least 1960, leaving the lake at its foot. It’s retreating about 200 feet each year. Tsho Rolpa was once just a pond atop the glacier. Now it’s half a kilometer wide and three and a half kilometers long; upward of a hundred million cubic meters of icy water are trapped behind a heap of rock the glacier deposited as it flowed down and then retreated. The Netherlands helped Nepal carve out a trench through that heap of rock to allow some of the lake’s water to drain into the Rolwaling River.

The Tibetan Plateau is a unique feature of the Earth’s surface. Its elevation, 5 km above sea level, and a crust twice the normal thickness, have long been recognized as resultin g from the collision o f the Indian and Eurasian continents. The region is regarded as the prime example of collision tectonics. However, because Tibet was for long virtually inaccessible to geologists from the rest of the world, the mechanism by which the Plateau evolved and by which the crust was doubled in thickness, remained speculative. During the past two decades, Chinese geologists have explored and systematically mapped much of this vast and largely uninhabited region ; Academia Sinica mounted a series of geological expeditions. The results of this and other work were presented at an international symposium on the Qinghai—Xizang (Tibet) Plateau in Beijing in 1980 and demonstrated on a traverse through southern Tibet from Lhasa to Kathmandu .


Author(s):  
Mike Searle

The Tibetan Plateau is by far the largest region of high elevation, averaging just above 5,000 metres above sea level, and the thickest crust, between 70 and 90 kilometres thick, anywhere in the world. This huge plateau region is very flat—lying in the internally drained parts of the Chang Tang in north and central Tibet, but in parts of the externally drained eastern Tibet, three or four mountain ranges larger and higher than the Alps rise above the frozen plateau. Some of the world’s largest and longest mountain ranges border the plateau, the ‘flaming mountains’ of the Tien Shan along the north-west, the Kun Lun along the north, the Longmen Shan in the east, and of course the mighty Himalaya forming the southern border of the plateau. The great trans-Himalayan mountain ranges of the Pamir and Karakoram are geologically part of the Asian plate and western Tibet but, as we have noted before, unlike Tibet, these ranges have incredibly high relief with 7- and 8-kilometre-high mountains and deeply eroded rivers and glacial valleys. The western part of the Tibetan Plateau is the highest, driest, and wildest area of Tibet. Here there is almost no rainfall and rivers that carry run-off from the bordering mountain ranges simply evaporate into saltpans or disappear underground. Rivers draining the Kun Lun flow north into the Takla Makan Desert, forming seasonal marshlands in the wet season and a dusty desert when the rivers run dry. The discovery of fossil tropical leaves, palm tree trunks, and even bones from miniature Miocene horses suggest that the climate may have been wetter in the past, but this is also dependent on the rise of the plateau. Exactly when Tibet rose to its present elevation is a matter of great debate. Nowadays the Indian Ocean monsoon winds sweep moisture-laden air over the Indian sub-continent during the summer months (late June–September). All the moisture is dumped as the summer monsoon, the torrential rains that sweep across India from south-east to north-west.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Terumi Ikawa ◽  
Yuichi Nozoe ◽  
Natsuko Yamashita ◽  
Namiko Nishimura ◽  
Satoshi Ohnoki ◽  
...  

Sea skatersHalobates matsumuraiEsaki andAsclepios shiranui(Esaki) are among the few marine insects found in Japan. For the past several decades, they have become rare in most localities and have now been designated as endangered by the government. In order to understand their adaptive strategies to the marine environment and to develop conservation measures, it is essential to know their life histories. We studied their lifecycles in Kujukushima Bay off the north coast of Kyushu (Japan) where they co-occurred in small coves along the jagged coast. They appeared to have more than one generation a year and to overwinter in the egg stage. Eggs ofH. matsumuraiwere laid on natural sandstones and man-made sandstone walls along the shore, mostly above the average sea level. The eggs had very hard shells, presumably adaptive to protect them from desiccation, solar radiation, and wave action, especially during the overwintering period.


2014 ◽  
Vol 10 (4) ◽  
pp. 3327-3356 ◽  
Author(s):  
J. Wernicke ◽  
J. Grießinger ◽  
P. Hochreuther ◽  
A. Bräuning

Abstract. We present an 800 years long δ18O chronology from the eastern part of the Tibetan Plateau (TP). The chronology dates back to 1193 AD and was sampled in 1996 AD from living Juniperus tibetica trees. The chronology is unique for eastern Tibet and provides a reliable archive for hydroclimatic reconstructions. Highly significant correlations were obtained with air moisture (relative humidity, vapour pressure and precipitation) during the summer season. We applied a linear transfer model to reconstruct the summer season relative humidity variation over the past 800 years. We identified more moist conditions at the termination of the Medieval Warm Period, an oscillating air humidity around the mean during the Little Ice Age and a sudden decrease of relative humidity since the 1870s. The late 19th century humidity decrease is in good accordance with several multiproxy hydroclimate reconstructions for south Tibet. On the other hand, since the end of the 19th century strong evidences for an increase in humidity on the northern TP is exhibited. Spatial correlation analysis with the North Atlantic Oscillation index (NAO) and the sea surface temperature (SST) of Niño region 3.4 reveal a weak and nonstationary relationship to the δ18O chronology. Instead, spatial correlations expose a dominating convective influence to the relative humidity reconstruction. Furthermore, wavelength analysis reveal good agreements between the significant cyclicities in our δ18O chronology and several moisture sensitive proxy archives.


Science ◽  
2018 ◽  
Vol 362 (6418) ◽  
pp. 1049-1051 ◽  
Author(s):  
X. L. Zhang ◽  
B. B. Ha ◽  
S. J. Wang ◽  
Z. J. Chen ◽  
J. Y. Ge ◽  
...  

The Tibetan Plateau is the highest and one of the most demanding environments ever inhabited by humans. We investigated the timing and mechanisms of its initial colonization at the Nwya Devu site, located nearly 4600 meters above sea level. This site, dating from 40,000 to 30,000 years ago, is the highest Paleolithic archaeological site yet identified globally. Nwya Devu has yielded an abundant blade tool assemblage, indicating hitherto-unknown capacities for the survival of modern humans who camped in this environment. This site deepens the history of the peopling of the “roof of the world” and the antiquity of human high-altitude occupations more generally.


2021 ◽  
Author(s):  
Mingxing Dong

Abstract End-Permian mass extinction is the largest bio-crises in the past 542 million years in Earth's history. Despite half a century of study, what caused the catastrophe remains equivocal. Fossil collections in the study area of Bayan Har, NW China, suggest a continuous Permian sequence, whereas most mid-to-upper Permian strata were missing. By correlating the Permian sequence reconstructed from reworked carbonate clasts with the measured Permian section, we corroborate a sea-level fall of at least 354 m caused by plume-induced uplift, resulted in the erosion of the last 15-Myr Permian carbonate strata, from Uppermost Permian to the fusulinid zone. The marine regression and resultant erosion occurred not only in China but also in Canadian Arctica[1], Oman[2], Canadian Rockies[3], Norway[3], North America[3] all over the world. New sections and digitalized sea-level regression demonstrate that the period of extinction falls within the hiatus, a break in deposition between the uppermost Permian carbonate strata and the clasts reworked from Permian platforms, representing a duration of sea-level drop 354 m. Carbonate clasts, Siberian Traps volcanism, global warming, anoxia, and ocean acidification are all post-extinction geological events. Why did the extinction occur during the falling stage? We will never know because we can't study a hiatus unrepresented by strata unless we associate the extinction with the sea-level drop.


2021 ◽  
Vol 18 (2) ◽  
pp. 367-376
Author(s):  
Cheng-long Zhou ◽  
Fan Yang ◽  
Wen Huo ◽  
Ali Mamtimin ◽  
Xing-hua Yang

AJIL Unbound ◽  
2021 ◽  
Vol 115 ◽  
pp. 11-16
Author(s):  
Giesela Rühl

The past sixteen years have witnessed the proliferation of international commercial courts around the world. However, up until recently, this was largely an Asian and a Middle Eastern phenomenon. Only during the past decade have Continental European countries, notably Germany, France and the Netherlands, joined the bandwagon and started to create new judicial bodies for international commercial cases. Driven by the desire to attract high-volume commercial litigation, these bodies try to offer international businesses a better dispute settlement framework. But what are their chances of success? Will more international litigants decide to settle their disputes in these countries? In this essay, I argue that, despite its recently displayed activism, Continental Europe lags behind on international commercial courts. In fact, although the various European initiatives are laudable, most cannot compete with the traditional market leaders, especially the London Commercial Court, or with new rivals in Asia and the Middle East. If Continental Europe wants a role in the international litigation market, it must embrace more radical change. And this change will most likely have to happen on the European––not the national––level.


2017 ◽  
Vol 71 (1) ◽  
Author(s):  
Elisabeth Hsu ◽  
Franz K. Huber ◽  
Caroline S. Weckerle

AbstractThe Shuhi of Muli County, Sichuan Province, are one of multiple ethnic groups inhabiting the river gorges of the Qinghai-Gansu-Sichuan corridor between the Tibetan plateau and the Chinese lowlands. The Shuhi have grown paddy rice since times immemorial at an unusually high altitude (ca. 2,300 m above sea level). This article aims to explain this conundrum not merely through the ecology (as is common among Tibetan area specialists), but by researching the cultivation and consumption of rice as a historically-evolved cultural practice. According to a recently formulated agro-archaeological hypothesis regarding the macro-region of Eurasia, it is possible to identify two supra-regional culture complexes distinguished by their respective culinary technologies: rice-boiling versus wheat-grinding-and-baking. The hypothesis posits that the fault line between the two supra-regional cultural complexes is precisely along this river gorges corridor. In this article we provide support for this hypothesis arguing that Shuhi ritual and kinship practices have much affinity with those of other rice-boiling peoples in Southeast Asia, whereas certain of their current religious practices are shared with the wheat-grinding Tibetans.


Sign in / Sign up

Export Citation Format

Share Document