scholarly journals Intensified Impact of Winter Arctic Oscillation on Simultaneous Precipitation Over the Mid–High Latitudes of Asia Since the Early 2000s

2021 ◽  
Vol 9 ◽  
Author(s):  
Haibo Zhou ◽  
Ke Fan

This study reveals an intensified impact of winter (November–February mean) Arctic Oscillation (AO) on simultaneous precipitation over the mid–high latitudes of Asia (MHA) since the early 2000s. The unstable relationship may be related to the changes in the tropospheric AO mode and the subtropical jet. Further analyses suggest that their changes may be attributable to the interdecadal changes in the stratospheric polar vortex. During 2002–2017, the anomalously weak stratospheric polar vortex is accompanied by intensified upward-propagating tropospheric planetary-scale waves anomalies. Subsequently, the stratospheric geopotential height anomalies over the North Atlantic high-latitudes propagate downward strongly, causing the changes in the tropospheric AO mode, that is, the positive height anomalies over the North Atlantic high-latitudes are stronger and extend southward, corresponding to the stronger and eastward extension of negative height anomalies over the North Atlantic mid-latitudes. Thus, the Rossby wave source anomalies over Baffin Bay and the Black Sea are strong, and correspondingly so too are their subsequently excited the Rossby waves anomalies. Meanwhile, the planetary-scale waves anomalies propagate weakly along the low-latitude waveguide, causing the intensified and southward shift of the subtropical jet. Therefore, the strong Rossby waves anomalies propagate eastward to the MHA. By contrast, during 1979–1999, the strong stratospheric polar vortex anomaly is accompanied by weak upward-propagating planetary-scale waves anomalies, resulting in weaker height anomalies over the North Atlantic mid–high latitudes. Consequently, the anomalous Rossby waves are weak. In addition, the subtropical jet weakens and shifts northward, which causes the Rossby waves anomalies to dominate over the North Atlantic, and thereby the impact of winter AO on simultaneous precipitation over the MHA is weak.

2020 ◽  
Author(s):  
Johanna Baehr ◽  
Simon Wett ◽  
Mikhail Dobrynin ◽  
Daniela Domeisen

<p>The downward influence of the stratosphere on the troposphere can be significant during boreal winter when the polar vortex is most variable, when major circulation changes in the stratosphere can impact the tropospheric flow. These strong and weak vortex events, the latter also referred to as Sudden Stratospheric Warmings (SSWs), are capable of influencing the tropospheric circulation down to the sea level on timescales from weeks to months. Thus, the occurrence of stratospheric polar vortex events influences the seasonal predictability of sea level pressure (SLP), which is, over the Atlantic sector, strongly linked to the North Atlantic oscillation (NAO).<br>We analyze the influence of the polar vortex on the seasonal predictability of SLP in a seasonal prediction system based on the mixed resolution configuration of the coupled Max-Planck-Institute Earth System Model (MPI-ESM), where we investigate a 30 member ensemble hindcast simulation covering 1982 -2016. Since the state of the polar vortex is predictable only a few weeks or even days ahead, the seasonal prediction system cannot exactly predict the day of occurrence of stratospheric events. However, making use of the large number of stratospheric polar vortex events in the ensemble hindcast simulation, we present a statistical analysis of the influence of a correct or incorrect prediction of the stratospheric vortex state on the seasonal predictability of SLP over the North Atlantic and Europe.</p>


2019 ◽  
Vol 32 (16) ◽  
pp. 5235-5250 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Renguang Wu ◽  
Wen Zhou ◽  
...  

AbstractThe wintertime Arctic Oscillation (AO) pattern in phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models displays notable differences from the reanalysis. The North Pacific center of the AO pattern is larger in the ensemble mean of 27 models than in the reanalysis, and the magnitude of the North Pacific center of the AO pattern varies largely among the models. This study investigates the plausible sources of the diversity of the AO pattern in the models. Analysis indicates that the amplitude of the North Pacific center is associated with the coupling between the North Pacific and North Atlantic, which in turn is primarily modulated by the strength of the stratospheric polar vortex. A comparative analysis is conducted for the strong polar vortex (SPV) and weak polar vortex (WPV) models. It reveals that a stronger stratospheric polar vortex induces more planetary waves to reflect from the North Pacific to the North Atlantic and more wave activity fluxes to propagate from the North Pacific to the North Atlantic in the SPV models than in the WPV models. Thus, the coupling of atmospheric circulation between the North Pacific and North Atlantic is stronger in the SPV models, which facilitates more North Pacific variability to be involved in the AO variability and induces a stronger North Pacific center in the AO pattern. The increase in vertical resolution may improve the simulation of the stratospheric polar vortex and thereby reduces the model biases in the North Pacific–North Atlantic coupling and thereby the amplitude of the North Pacific center of the AO pattern in models.


2021 ◽  
Author(s):  
Amy H. Butler ◽  
Daniela I. V. Domeisen

Abstract. Every spring, the stratospheric polar vortex transitions from its westerly wintertime state to its easterly summertime state due to seasonal changes in incoming solar radiation, an event known as the final stratospheric warming (FSW). While FSWs tend to be less abrupt than reversals of the boreal polar vortex in midwinter, known as sudden stratospheric warming (SSW) events, their timing and characteristics can be significantly modulated by atmospheric planetary-scale waves. Just like SSWs, FSWs have been found to have predictable surface impacts. While SSWs are commonly classified according to their wave geometry, either by how the vortex evolves (whether the vortex displaces off the pole or splits into two vortices) or by the dominant wavenumber of the vortex just prior to the SSW (wave-1 versus wave-2), little is known about the wave geometry of FSW events. We here show that FSW events for both hemispheres in most cases exhibit a clear wave geometry. Most FSWs can be classified into wave-1 or wave-2 events, but wave-3 also plays a significant role in both hemispheres. Additionally, we find that in the Northern Hemisphere, wave-2 events are more likely to occur later in the spring, while in the Southern Hemisphere, wave-1 or wave-2 events show no clear preference in timing. The FSW enhances total column ozone over the pole of both hemispheres during spring, but the spatial distribution of ozone anomalies can be influenced by the wave geometry and the timing of the event. We also describe the stratosphere's downward influence on surface weather following wave-1 and wave-2 FSW events. Significant differences between the tropospheric response to wave-1 and wave-2 FSW events occur over North America and over the Southern Ocean, while no significant differences are found over the North Atlantic region, Europe, and Antarctica.


2020 ◽  
pp. 1-46
Author(s):  
Nathanael Harwood ◽  
Richard Hall ◽  
Giorgia Di Capua ◽  
Andrew Russell ◽  
Allan Tucker

AbstractRecent enhanced warming and sea ice depletion in the Arctic have been put forward as potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes relative to other drivers remains unknown. Arctic-midlatitude connections in the North Atlantic region are particularly complex but important due to the frequent occurrence of severe winters in recent decades. Here, Dynamic Bayesian Networks with hidden variables are introduced to the field to assess their suitability for teleconnection analyses. Climate networks are constructed to analyse North Atlantic circulation variability at 5-day to monthly timescales during the winter months of the years 1981-2018. The inclusion of a number of Arctic, midlatitude and tropical variables allows for an investigation into the relative role of Arctic influence compared to internal atmospheric variability and other remote drivers.A robust covariability between regions of amplified Arctic warming and two definitions of midlatitude circulation is found to occur entirely within winter at submonthly timescales. Hidden variables incorporated in networks represent two distinct modes of stratospheric polar vortex variability, capturing a periodic shift between average conditions and slower anomalous flow. The influence of the Barents-Kara Seas region on the North Atlantic Oscillation is found to be the strongest link at 5- and 10-day averages, whilst the stratospheric polar vortex strongly influences jet variability on monthly timescales.


2009 ◽  
Vol 22 (20) ◽  
pp. 5464-5480 ◽  
Author(s):  
Torben Kunz ◽  
Klaus Fraedrich ◽  
Frank Lunkeit

Abstract This observational study investigates the impact of North Atlantic synoptic-scale wave breaking on the North Atlantic Oscillation (NAO) and its connection with the stratosphere in winter, as derived from the 40-yr ECMWF Re-Analysis (ERA-40). Anticyclonic (AB) and cyclonic wave breaking (CB) composites are compiled of the temporal and spatial components of the large-scale circulation using a method for the detection of AB and CB events from daily maps of potential vorticity on an isentropic surface. From this analysis a close link between wave breaking, the NAO, and the stratosphere is found: 1) a positive feedback between the occurrence of AB (CB) events and the positive (negative) phase of the NAO is suggested, whereas wave breaking in general without any reference to AB- or CB-like behavior does not affect the NAO, though it preferably emerges from its positive phase. 2) AB strengthens the North Atlantic eddy-driven jet and acts to separate it from the subtropical jet, while CB weakens the eddy-driven jet and tends to merge both jets. 3) AB (CB) events are associated with a stronger (weaker) lower-stratospheric polar vortex, characterized by the 50-hPa northern annular mode. During persistent weak vortex episodes, significantly more frequent CB than AB events are observed concurrently with a significant negative NAO response up to 55 days after the onset of the stratospheric perturbation. Finally, tropospheric wave breaking is related to nonannular stratospheric variability, suggesting an additional sensitivity of wave breaking and, thus, the NAO to specific distortions of the stratospheric polar vortex, rather than solely its strength.


2020 ◽  
Author(s):  
Christian M. Grams ◽  
Remo Beerli ◽  
Dominik Büeler ◽  
Daniela I. V. Domeisen ◽  
Lukas Papritz ◽  
...  

<p>Extreme states of the winter stratosphere, such as sudden stratospheric warmings (SSWs) or an extremely strong stratospheric polar vortex (SPV), can affect surface weather over the North-Atlantic European region on subseasonal time scales. Here we investigate the occurrence of Atlantic-European weather regimes during different stratospheric conditions in winter and their link to large-scale weather events in European sub-regions. We further elucidate if the large-scale flow regime in the North Atlantic at SSW onset determines the subsequent downward impact.</p><p>Anomalous stratospheric conditions modulate the occurrence of weather regimes which project strongly onto the NAO and the likelihood of their associated weather events. In contrast weather regimes which do not project strongly onto the NAO are not affected by anomalous stratospheric conditions. These regimes provide pathways to unexpected weather events in extreme stratospheric polar vortex states. For example, Greenland blocking (GL) and the Atlantic Trough (AT) regime are the most frequent large-scale flow patterns following SSWs. While in Central Europe GL provides a pathway to cold and calm weather, AT provides a pathway to warm and windy weather. The latter weather conditions are usually not expected after an SSW. Furthermore, we find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. An assessment of forecast performance in ECMWF extended-range reforecasts suggests that the model tends to forecast too cold conditions following weak SPV states.</p><p>In summary, weather regimes and their response to anomalous SPV states importantly modulate the stratospheric impact on European surface weather. In particular the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW. We conclude that a correct representation of weather regime life cycles in numerical models could provide crucial guidance for subseasonal prediction.</p><p> </p><p>References:</p><p>Beerli, R., and C. M. Grams, 2019: Stratospheric modulation of the large-scale circulation in the Atlantic–European region and its implications for surface weather events. Q.J.R. Meteorol. Soc., <strong>145</strong>, 3732–3750, doi:10.1002/qj.3653.</p><p>Domeisen, D. I. V., C. M. Grams, and L. Papritz, 2020: The role of North Atlantic-European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics Discussions, 1–24, doi:https://doi.org/10.5194/wcd-2019-16.</p>


2021 ◽  
Author(s):  
Amy H. Butler ◽  
Daniela I.V. Domeisen

<p>Every spring, the stratospheric polar vortex transitions from its westerly wintertime state to its easterly summertime state due to seasonal changes in incoming solar radiation, an event known as the "final stratospheric warming" (FSW). While FSWs tend to be less abrupt than reversals of the boreal polar vortex in midwinter, known as sudden stratospheric warming (SSW) events, their timing and characteristics can be significantly modulated by atmospheric planetary-scale waves. Just like SSWs, FSWs have been found to have predictable surface impacts. While SSWs are commonly classified according to their wave geometry, either by how the vortex evolves (whether the vortex displaces off the pole or splits into two vortices) or by the dominant wavenumber of the vortex just prior to the SSW (wave-1 versus wave-2), little is known about the wave geometry of FSW events. We here show that FSW events for both hemispheres in most cases exhibit a clear wave geometry. Most FSWs can be classified into wave-1 or wave-2 events, but wave-3 also plays a significant role in both hemispheres. Additionally, we find that in the Northern Hemisphere, wave-2 events are more likely to occur later in the spring, while in the Southern Hemisphere, wave-1 or wave-2 events show no clear preference in timing. The FSW enhances total column ozone over the pole of both hemispheres during spring, but the spatial distribution of ozone anomalies can be influenced by the wave geometry and the timing of the event. We also describe the stratosphere's downward influence on surface weather following wave-1 and wave-2 FSW events. Significant differences between the tropospheric response to wave-1 and wave-2 FSW events occur over North America and over the Southern Ocean, while no significant differences are found over the North Atlantic region, Europe, and Antarctica. </p>


2009 ◽  
Vol 66 (2) ◽  
pp. 495-507 ◽  
Author(s):  
Lawrence Coy ◽  
Stephen Eckermann ◽  
Karl Hoppel

Abstract The major stratospheric sudden warming (SSW) of January 2006 is examined using meteorological fields from Goddard Earth Observing System version 4 (GEOS-4) analyses and forecast fields from the Navy Operational Global Atmospheric Prediction System–Advanced Level Physics, High Altitude (NOGAPS-ALPHA). The study focuses on the upper tropospheric forcing that led to the major SSW and the vertical structure of the subtropic wave breaking near 10 hPa that moved low tropical values of potential vorticity (PV) to the pole. Results show that an eastward-propagating upper tropospheric ridge over the North Atlantic with its associated cold temperature perturbations (as manifested by high 360-K potential temperature surface perturbations) and large positive local values of meridional heat flux directly forced a change in the stratospheric polar vortex, leading to the stratospheric subtropical wave breaking and warming. Results also show that the anticyclonic development, initiated by the subtropical wave breaking and associated with the poleward advection of the low PV values, occurred over a limited altitude range of approximately 6–10 km. The authors also show that the poleward advection of this localized low-PV anomaly was associated with changes in the Eliassen–Palm (EP) flux from equatorward to poleward, suggesting an important role for Rossby wave reflection in the SSW of January 2006. Similar upper tropospheric forcing and subtropical wave breaking were found to occur prior to the major SSW of January 2003.


2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


Sign in / Sign up

Export Citation Format

Share Document