scholarly journals Numerical Simulation of the Effects of Wedge Subduction on the Lithospheric Thermal Structure and the Seismogenic Zone South of Chile Triple Junction

2021 ◽  
Vol 9 ◽  
Author(s):  
Changsheng Guo ◽  
Pengchao Sun ◽  
Dongping Wei

In contrast to common subduction, the young and thin part of the Antarctic Plate subducts first to the south of the Chile Triple Junction (CTJ), followed by the old and thick part, corresponding to wedge subduction. A finite element model was used to simulate the wedge subduction of the Antarctic Plate and to compare it with the slab subduction of the Nazca Plate. The results show that the CTJ is not only a wedge subduction boundary but also an important factor controlling the lithospheric thermal structure of the overriding plate. The computed heat flow curves are consistent with the data observed near the trench of the two selected profiles. The different slab dips to the north and south of the CTJ are considered to be caused by wedge subduction. When the slabs are young and at the same age, the deep dip of the Antarctic slab is 22° smaller than the Nazca slab. Southward from the CTJ, the slab age of the wedge subduction increases, which leads to a larger slab dip, a colder slab, and a wider seismogenic zone. The effect of the slab age of wedge subduction on the focal depth is smaller than that of the convergence rate. A 4.8-cm/year difference in convergence rate of the wedge subduction results in an 11-km difference in the width of the seismogenic zone and a 10-km difference in the depth of the downdip limit. Among these controlling factors, the convergence rate plays a major role in the different focal depths south and north of the CTJ.

2021 ◽  
Vol 7 (5) ◽  
pp. eabe2348
Author(s):  
Karen Lythgoe ◽  
Muzli Muzli ◽  
Kyle Bradley ◽  
Teng Wang ◽  
Andri Dian Nugraha ◽  
...  

Temperature plays a critical role in defining the seismogenic zone, the area of the crust where earthquakes most commonly occur; however, thermal controls on fault ruptures are rarely observed directly. We used a rapidly deployed seismic array to monitor an unusual earthquake cascade in 2018 at Lombok, Indonesia, during which two magnitude 6.9 earthquakes with surprisingly different rupture characteristics nucleated beneath an active arc volcano. The thermal imprint of the volcano on the fault elevated the base of the seismogenic zone beneath the volcanic edifice by 8 km, while also reducing its width. This thermal “squeezing” directly controlled the location, directivity, dynamics, and magnitude of the earthquake cascade. Earthquake segmentation due to thermal structure can occur where strong temperature gradients exist on a fault.


2021 ◽  
Author(s):  
Elisa Buforn ◽  
Carmen Pro ◽  
Hernando Tavera ◽  
Agustin Udias ◽  
Maurizio Mattesini

<p>We analyze the differences in the rupture process for twelve very deep earthquakes (h>500 km) at the Peruvian-Brazilian subduction zone. These earthquakes are produced by the contact between the Nazca and the South America Plates. We have estimated the focal mechanism from teleseismic waveforms, using the slip inversion over the rupture plane, testing rupture velocities ranging from 2.5 km/s to 4.5 km/s, and analyzing the slip distribution for each  rupture velocity. The selected 12 earthquakes have occurred in the period 1994- 2016, with magnitudes between 5.9 and 8.2 and focal depth 500- 700 km. They can be separated in two groups attending to their epicentral location. The first group is formed by 9 events located, in the Peruvian-Brazil border, with epicenters following a NNW-SSE alignment, parallel to the trench. Their focal mechanisms present solutions of normal faulting with planes oriented in NS direction, dipping about 45 degrees and with vertical pressure axis. The second group is formed by three earthquakes located to the south of the first group in northern Bolivia. Their mechanisms show dip-slip motion with a near vertical plane, oriented in NW-SE direction and the pressure axis dipping 45º to the NE. The moment rate functions correspond to single ruptures with time durations from 6s to 12s, with the exception of the large 1994 Bolivian earthquake (Mw = 8.2) which presents a complex and longer STF. The different mechanisms for the two groups of earthquakes confirm the different dip of the subducting Nazca plate at the two areas, with the steeper part at the southern one.  </p>


1975 ◽  
Vol 65 (6) ◽  
pp. 1787-1796
Author(s):  
Mansur A. Choudhury ◽  
Georges Poupinet ◽  
Guy Perrier

abstract Behavior of P, S and ScS residuals as well as those of differential travel times of ScS-P from the Jeffreys-Bullen tables are analyzed. The phases have been read from short-period records of the Antarctic station, Dumont d'Urville (DRV); the earthquakes originating in New Hebrides, Fiji-Tonga, and Banda Sea regions. P residuals from all regions show a mean value of about −1 sec. On the contrary, S and ScS residuals, well correlated among themselves, show important regional as well as focal-depth dependence. ScS-P residuals from shallow and intermediate shocks are largely positive for New Hebrides and largely negative for Banda Sea; those from intermediate shocks are moderately positive for Fiji-Tonga. The anomalies disappear at depths greater than about 200 km. Upper mantle shear velocity models are presented for the three regions. The models are discussed in relation to a sinking lithosphere.


Author(s):  
E.L. Pratson ◽  
C. Broglia ◽  
X. Golovchenko ◽  
A. Waseda ◽  
P. Froelich

Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1326-1330
Author(s):  
David M. Holland ◽  
Keith W. Nicholls ◽  
Aurora Basinski

The Southern Ocean exerts a major influence on the mass balance of the Antarctic Ice Sheet, either indirectly, by its influence on air temperatures and winds, or directly, mostly through its effects on ice shelves. How much melting the ocean causes depends on the temperature of the water, which in turn is controlled by the combination of the thermal structure of the surrounding ocean and local ocean circulation, which in turn is determined largely by winds and bathymetry. As climate warms and atmospheric circulation changes, there will be follow-on changes in the ocean circulation and temperature. These consequences will affect the pace of mass loss of the Antarctic Ice Sheet.


2018 ◽  
Vol 744 ◽  
pp. 134-154 ◽  
Author(s):  
Andrés Folguera ◽  
Alfonso Encinas ◽  
Andrés Echaurren ◽  
Guido Gianni ◽  
Darío Orts ◽  
...  

2018 ◽  
Vol 375 ◽  
pp. 120-133 ◽  
Author(s):  
Loïc Piret ◽  
Sebastien Bertrand ◽  
Catherine Kissel ◽  
Ricardo De Pol-Holz ◽  
Alvaro Tamayo Hernando ◽  
...  

Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 378-391 ◽  
Author(s):  
E.E. Rodriguez ◽  
R.M. Russo

Abstract Continental crustal structure is the product of those processes that operate typically during a long tectonic history. For the Patagonia composite terrane, these tectonic processes include its early Paleozoic accretion to the South America portion of Gondwana, Triassic rifting of Gondwana, and overriding of Pacific Basin oceanic lithosphere since the Mesozoic. To assess the crustal structure and glean insight into how these tectonic processes affected Patagonia, we combined data from two temporary seismic networks situated inboard of the Chile triple junction, with a combined total of 80 broadband seismic stations. Events suitable for analysis yielded 995 teleseismic receiver functions. We estimated crustal thicknesses using two methods, the H-k stacking method and common conversion point stacking. Crustal thicknesses vary between 30 and 55 km. The South American Moho lies at 28–35 km depth in forearc regions that have experienced ridge subduction, in contrast to crustal thicknesses ranging from 34 to 55 km beneath regions north of the Chile triple junction. Inboard, the prevailing Moho depth of ∼35 km shallows to ∼30 km along an E-W trend between 46.5°S and 47°S; we relate this structure to Paleozoic thrust emplacement of the Proterozoic Deseado Massif terrane above the thicker crust of the North Patagonian/Somún Cura terrane along a major south-dipping fault.


Sign in / Sign up

Export Citation Format

Share Document