scholarly journals Semi-Supervised Learning–Based Petrophysical Facies Division and “Sweet Spot” Identification of Low-Permeability Sandstone Reservoir

2022 ◽  
Vol 9 ◽  
Author(s):  
Hongjun Fan ◽  
Xiaoqing Zhao ◽  
Xu Liang ◽  
Quansheng Miao ◽  
Yongnian Jin ◽  
...  

The identification of the “sweet spot” of low-permeability sandstone reservoirs is a basic research topic in the exploration and development of oil and gas fields. Lithology identification, reservoir classification based on the pore structure and physical properties, and petrophysical facies classification are common methods for low-permeability reservoir classification, but their classification effect needs to be improved. The low-permeability reservoir is characterized by low rock physical properties, small porosity and permeability distribution range, and strong heterogeneity between layers. The seepage capacity and productivity of the reservoir vary considerably. Moreover, the logging response characteristics and resistivity value are similar for low-permeability reservoirs. In addition to physical properties and oil bearing, they are also affected by factors such as complex lithology, pore structure, and other factors, making it difficult for division of reservoir petrophysical facies and “sweet spot” identification. In this study, the logging values between low-porosity and -permeability reservoirs in the Paleozoic Es3 reservoir in the M field of the Bohai Sea, and between natural gamma rays and triple porosity reservoirs are similar. Resistivity is strongly influenced by physical properties, oil content, pore structure, and clay content, and the productivity difference is obvious. In order to improve the identification accuracy of “sweet spot,” a semi-supervised learning model for petrophysical facies division is proposed. The influence of lithology and physical properties on resistivity was removed by using an artificial neural network to predict resistivity R0 saturated with pure water. Based on the logging data, the automatic clustering MRGC algorithm was used to optimize the sensitive parameters and divide the logging facies to establish the unsupervised clustering model. Then using the divided results of mercury injection data, core cast thin layers, and logging faces, the characteristics of diagenetic types, pore structure, and logging response were integrated to identify rock petrophysical facies and establish a supervised identification model. A semi-supervised learning model based on the combination of “unsupervised supervised” was extended to the whole region training prediction for “sweet spot” identification, and the prediction results of the model were in good agreement with the actual results.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fengjuan Dong ◽  
Na Liu ◽  
Zhen Sun ◽  
Xiaolong Wei ◽  
Haonan Wang ◽  
...  

The complex pore structure of low-permeability sandstone reservoir makes it difficult to characterize the heterogeneity of pore throat. Taking the reservoir of Sanjianfang formation in QL oilfield as an example, the fractal dimension of different storage spaces is calculated by using fractal theory based on casting thin section, scanning electron microscope, and high-pressure mercury injection, and the correlation between porosity, permeability, and contribution of different storage space permeabilities is analyzed. The results show that the reservoir of Sanjianfang formation in QL oilfield mainly develops small pores, fine pores, and micropores, and the fractal dimension of micropore structure is between 2.6044 and 2.9982, with an average value of 2.8316. The more complex the pore structure is, the stronger the microheterogeneity is. The higher the fractal dimension, the more complex the pore structure and the smaller the porosity and permeability. The fractal dimensions of small pores, fine pores, and micropores increase successively with the decrease in pore radius, and the microstructure heterogeneity of large pores is weaker than that of small pores. It provides a theoretical basis for the exploration and development of low-permeability sandstone reservoirs.


2018 ◽  
Vol 3 (2) ◽  
pp. 159-164
Author(s):  
Haibin Su ◽  
Ninghong Jia ◽  
Yandong Yang ◽  
Zhigang Wang ◽  
Zhibin Jiang ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Haiyong Zhang ◽  
Shunli He ◽  
Chunyan Jiao ◽  
Guohua Luan ◽  
Shaoyuan Mo

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 453
Author(s):  
Wenhuan Li ◽  
Tailiang Fan ◽  
Zhiqian Gao ◽  
Zhixiong Wu ◽  
Ya’nan Li ◽  
...  

The Lower Jurassic reservoir in the Niudong area of the northern margin of Qaidam Basin is a typical low permeability sandstone reservoir and an important target for oil and gas exploration in the northern margin of the Qaidam Basin. In this paper, casting thin section analysis, scanning electron microscopy, X-ray diffraction, and stable isotope analysis among other methods were used to identify the diagenetic characteristics and evolution as well as the main factors influencing reservoir quality in the study area. The predominant types of sandstone in the study area are mainly feldspathic lithic sandstone and lithic arkose, followed by feldspathic sandstone and lithic sandstone. Reservoir porosity ranges from 0.01% to 19.5% (average of 9.9%), and permeability ranges from 0.01 to 32.4 mD (average of 3.8 mD). The reservoir exhibits robust heterogeneity and its quality is mainly influenced by diagenesis. The Lower Jurassic reservoir in the study area has undergone complex diagenesis and reached the middle diagenesis stage (A–B). The quantitative analysis of pore evolution showed that the porosity loss rate caused by compaction and cementation was 69.0% and 25.7% on average, and the porosity increase via dissolution was 4.8% on average. Compaction was the main cause of the reduction in the physical property of the reservoir in the study area, while cementation and dissolution were the main causes of reservoir heterogeneity. Cementation can reduce reservoir space by filling primary intergranular pores and secondary dissolved pores via cementation such as a calcite and illite/smectite mixed layer, whereas high cement content increased the compaction resistance of particles to preserve certain primary pores. δ13C and δ18O isotopes showed that the carbonate cement in the study area was the product of hydrocarbon generation by organic matter. The study area has conditions that are conductive to strong dissolution and mainly occur in feldspar dissolution, which produces a large number of secondary pores. It is important to improve the physical properties of the reservoir. Structurally, the Niudong area is a large nose uplift structure with developed fractures, which can be used as an effective oil and gas reservoir space and migration channel. In addition, the existence of fractures provides favorable conditions for the uninterrupted entry of acid fluid into the reservoir, promoting the occurrence of dissolution, and ultimately improves the physical properties of reservoirs, which is mainly manifested in improving the reservoir permeability.


Sign in / Sign up

Export Citation Format

Share Document