Dipole dispersion crossover and sonic logs in a limestone reservoir

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 390-407 ◽  
Author(s):  
Bikash K. Sinha ◽  
Michael R. Kane ◽  
Bernard Frignet

Analyses of sonic logs in a horizontal well provide new information about mechanical properties of rocks, made possible by recent developments in our understanding of acoustic wave propagation in prestressed formations. Most sections of this horizontal well exhibit azimuthal shear isotropy, indicating isotropic stresses in the plane perpendicular to the well trajectory, leading to stable wellbore conditions. However, two sections show dipole dispersion crossovers that confirm the presence of stress‐induced shear anisotropy caused by a difference between the maximum and minimum stresses in the plane perpendicular to the well trajectory. The two dipole dispersions are obtained by processing the recorded waveforms by a modified matrix pencil algorithm. The fast‐shear direction is estimated from Alford rotation of the cross‐dipole waveforms. One section of the well exhibits the fast‐shear direction parallel to the overburden stress as the maximum stress direction, whereas the other section has the fast‐shear direction parallel to the horizontal stress that is larger than the overburden stress. The cause of this change in the fast‐shear direction is believed to be the well’s penetration into a 3-ft-thick bed with lower porosity and permeability and significantly higher elastic stiffnesses than those in the other part of the homogeneous, high‐permeability reservoir. A stiff bed is likely to have greater stresses in its plane than perpendicular to it, which would make the horizontal stresses greater than the vertical.

2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840001 ◽  
Author(s):  
NA HUANG ◽  
YUJING JIANG ◽  
RICHENG LIU ◽  
YUXUAN XIA

The effect of model size on fluid flow through fractal rough fractures under shearing is investigated using a numerical simulation method. The shear behavior of rough fractures with self-affine properties was described using the analytical model, and the aperture fields with sizes varying from 25 to 200[Formula: see text]mm were extracted under shear displacements up to 20[Formula: see text]mm. Fluid flow through fractures in the directions both parallel and perpendicular to the shear directions was simulated by solving the Reynolds equation using a finite element code. The results show that fluid flow tends to converge into a few main flow channels as shear displacement increases, while the shapes of flow channels change significantly as the fracture size increases. As the model size increases, the permeability in the directions both parallel and perpendicular to the shear direction changes significantly first and then tends to move to a stable state. The size effects on the permeability in the direction parallel to the shear direction are more obvious than that in the direction perpendicular to the shear direction, due to the formation of contact ridges and connected channels perpendicular to the shear direction. The variances of the ratio between permeability in both directions become smaller as the model size increases and then this ratio tends to maintain constant after a certain size, with the value mainly ranging from 1.0 to 3.0.


2015 ◽  
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Abstract Since the late 1980's when Maersk published their work on multiple fracturing of horizontal wells in the Dan Field, the use of transverse multiple fractured horizontal wells has become the completion of choice and become the “industry standard” for unconventional and tight oil and tight gas reservoirs. Today approximately sixty percent of all wells drilled in the United States are drilled horizontally and nearly all of them are multiple fractured. Because a horizontal well adds additional cost and complexity to the drilling, completion, and stimulation of the well we need to fully understand anything that affects the cost and complexity. In other words, we need to understand the affects of the principal stresses, both direction and magnitude, on the drilling completion, and stimulation of these wells. However, little work has been done to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the question, in what direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal) or do I drill it in the direction of the minimum horizontal stress (transverse)? The answer to this question relates directly back to the title of this paper and please "Don't let your land man drive that decision." This paper focuses on the horizontal well's lateral direction (longitudinal or transverse fracture orientation) and how that direction influences productivity, reserves, and economics of horizontal wells. Optimization studies using a single phase fully three dimensional numeric simulator including convergent non-Darcy flow were used to highlight the importance of lateral direction as a function of reservoir permeability. These studies, conducted for both oil and gas, are used to identify the point on the permeability continuum where longitudinal wells outperform transverse wells. The simulations compare and contrast the transverse multiple fractured horizontal well to longitudinal wells based on the number of fractures and stages. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affected the decision over lateral direction in both oil and gas reservoirs. Additionally, how does completion style affect the lateral direction? That is, how does an open hole completion compare to a cased hole completion and should the type of completion affect the decision on in what direction the lateral should be drilled? These simulation results will be used to discuss the various horizontal well completion and stimulation metrics (rate, recovery, and economics) and how the choice of metrics affects the choice of lateral direction. This paper will also show a series of field case studies to illustrate actual field comparisons in both oil and gas reservoirs of longitudinal versus transverse horizontal wells and tie these field examples and results to the numeric simulation study. This work benefits the petroleum industry by: Establishing well performance and economic based criteria as a function of permeability for drilling longitudinal or transverse horizontal wells,Integrating the reservoir objectives and geomechanic limitations into a horizontal well completion and stimulation strategy,Developing well performance and economic objectives for horizontal well direction (transverse versus longitudinal) and highlighting the incremental benefits of various completion and stimulation strategies.


2015 ◽  
Vol 52 (7) ◽  
pp. 851-867 ◽  
Author(s):  
Thayanan Boonyarak ◽  
Charles W.W. Ng

An appropriate construction sequence for crossing tunnels can help minimize the adverse impact on the tunnel that is constructed first (considered as the existing tunnel). However, the influence of construction sequence on crossing-tunnel interaction is complex. Two pairs of three-dimensional centrifuge tests were carried out to investigate the effects of construction sequence on crossing-tunnel interaction. In the first pair of tests, the new tunnel was excavated beneath the existing tunnel in a reference test, while in the other test the new tunnel advanced above the existing tunnel. To study the effects of cover depth on the construction sequence, the depths of the existing and new tunnels were increased in the second pair of tests. An advanced hypoplasticity constitutive model with small-strain stiffness was adopted to back-analyze the tests. The existing tunnel was found to be vertically compressed when the new tunnel was excavated underneath, but vertically elongated when the new tunnel advanced above. This is because the reduction of stress acting on the existing tunnel in the horizontal direction was larger than in the vertical direction when the new tunnel was constructed beneath. On the other hand, the decrease in vertical stress on the existing tunnel was larger than the horizontal stress reduction when the new tunnel was excavated above. This behavior was observed in both pairs of tests, irrespective of the cover depths of the tunnels. As the cover depths of the existing and new tunnels increased, settlement of the existing tunnel due to the new tunnel construction beneath decreased. This is because with the larger cover depths of the tunnels, the increase in mobilized shear stiffness of the soil dominated the increase in stress relief caused by the tunnel excavation.


2014 ◽  
Vol 8 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Li Li ◽  
Jonathan D. Aubertin ◽  
Jean-Sébastien Dubé

The field of infrastructure rehabilitation and development requires a better understanding of soil-structure interactions. The interaction behaviour between soil and structures has mostly been investigated through theoretical and/or numerical analysis. This paper presents a series of experiments performed on an intermediate-scale physical model made of an instrumented silo. In contrast to most reported laboratory tests, both the horizontal and vertical stresses were monitored during backfilling operations realised by wild pouring. Drop tests were performed to investigate the density variation with respect to the drop (or falling) height of the soil, which were introduced in the pressure interpretation. The results showed that horizontal stress in the direction parallel to the pouring plane is larger than that perpendicular to the pouring plane. Apparently, the vertical stress is well-described using the arching solution by considering the backfill in an active state, whereas the horizontal stress perpendicular to the pouring plane is better described with the arching solution by considering the backfill in an at-rest state. An estimate of the earth pressure coefficients based on the measured vertical and horizontal stresses indicates, however, that the backfill was closer to an at-rest state in the direction perpendicular to the pouring plane, whereas in the direction parallel to the pouring plane, it was in a state between at-rest and passive. These results indicate that it is important to measure both the horizontal and vertical stresses to obtain a whole picture of the state of the backfill. The results showed also that the horizontal stresses can be larger than those calculated by the overburden solution, probably due to dynamic loading by drop mass during the filling operation and stress lock.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Shaohu Liu ◽  
Zhichao Zhu

Based on current issues of difficulties in controlling horizontal well trajectory and high cost in drilling deflecting, a compound deflecting BHA (bottom hole assembly) with diameter-adjustable stabilizer (DAS) and bending-adjustable housing (BAH) is presented. According to the DAS operational principles and the stress condition in operation, the computational formula of wedge’s axial moving displacement and piston’s radial telescopic displacement of the DAS driven by drilling fluid pressure is presented. This formula is verified by lab experimental simulation. Three-points-circle method is utilized to calculate geometrical build up rate of compound deflecting BHA, and the result is verified by field data. The method is utilized to make design and calculate for compound BHA. The research can be used as a reference for compound deflecting drilling in horizontal wells. The flow rate and pressure difference have a very serious impact on the flow regulator erosion, so the flow rate and pressure difference should be controlled when the DAS works, and it is suggested that the flow regulator should maintain and replace frequently when in service.


TERRITORIO ◽  
2012 ◽  
pp. 26-37
Author(s):  
Elena Granata ◽  
Paolo Pileri

The mafia in Northern Italy has been able to consolidate its presence by counting on the advantages offered by impoverished contexts with weak social relationships and weak economic and political structures. On the other hand, the mafia itself has been at the centre of processes that have impoverished and weakened communities in a vicious circle, which people have only recently become aware of. The authors reflect on the habitats of the mafia, alluding to those conditions which afford opportunities and to the fragility, porosity and permeability of institutions and to the legal and procedural uncertainties, which facilitate ambiguous and at times criminal behaviours.


2021 ◽  
Author(s):  
Jongsoo Hwang ◽  
Mukul Sharma ◽  
Maria-Magdalena Chiotoroiu ◽  
Torsten Clemens

Abstract Horizontal water injection wells have the capacity to inject larger volumes of water and have a smaller surface footprint than vertical wells. We present a new quantitative analysis on horizontal well injectivity, injection scheme (matrix vs. fracturing), and fracture containment. To precisely predict injector performance and delineate safe operating conditions, we simulate particle plugging, thermo-poro-elastic stress changes, thermal convection and conduction and fracture growth/containment in reservoirs with multiple layers. Simulation results show that matrix injection in horizontal wells continues over a longer time than vertical injectors as the particle deposition occurs slowly on the larger surface area of horizontal wellbores. At the same time, heat loss occurs uniformly over a longer wellbore length to cause less thermal stress reduction and delay fracture initiation. As a result, the horizontal well length and the injection rates are critical factors that control fracture initiation and long-term injectivity of horizontal injectors. To predict fracture containment accurately, thermal conduction in the caprock and associated thermal stresses are found to be critical factors. We show that ignoring these factors underestimates fracture height growth. Based on our simulation analysis, we suggest strategies to maintain high injectivity and delay fracture initiation by controlling the injection rate, temperature, and water quality. We also provide several methods to design horizontal water injectors to improve fracture containment considering wellbore orientation relative to the local stress orientations. Well placement in the local maximum horizontal stress direction induces longitudinal fractures with better containment and less fracture turning than transverse fractures. When the well is drilled perpendicular to the maximum horizontal stress direction, the initiation of transverse fractures is delayed compared with the longitudinal case. Flow control devices are recommended to segment the flow rate and the wellbore. This helps to ensure uniform water placement and helps to keep the fractures contained.


Sign in / Sign up

Export Citation Format

Share Document