scholarly journals Mechanisms and Product Options of Magnesiothermic Reduction of Silica to Silicon for Lithium-Ion Battery Applications

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Tan ◽  
Tingting Jiang ◽  
George Z. Chen

Lithium-ion batteries (LIBs) have been one of the most predominant rechargeable power sources due to their high energy/power density and long cycle life. As one of the most promising candidates for the new generation negative electrode materials in LIBs, silicon has the advantages of high specific capacity, a lithiation potential range close to that of lithium deposition, and rich abundance in the earth’s crust. However, the commercial use of silicon in LIBs is still limited by the short cycle life and poor rate performance due to the severe volume change during Li++ insertion/extraction, as well as the unsatisfactory conduction of electron and Li+ through silicon matrix. Therefore, many efforts have been made to control and stabilize the structures of silicon. Magnesiothermic reduction has been extensively demonstrated as a promising process for making porous silicon with micro- or nanosized structures for better electrochemical performance in LIBs. This article provides a brief but critical overview of magnesiothermic reduction under various conditions in several aspects, including the thermodynamics and mechanism of the reaction, the influences of the precursor and reaction conditions on the dynamics of the reduction, and the interface control and its effect on the morphology as well as the final performance of the silicon. These outcomes will bring about a clearer vision and better understanding on the production of silicon by magnesiothermic reduction for LIBs application.

2018 ◽  
Vol 6 (42) ◽  
pp. 20564-20620 ◽  
Author(s):  
Hailin Zhang ◽  
Hongbin Zhao ◽  
Muhammad Arif Khan ◽  
Wenwen Zou ◽  
Jiaqiang Xu ◽  
...  

This article comprehensively reviews the recent progress in the development of key components of lithium-ion batteries, including positive/negative electrodes, electrolytes and separators. The necessity of developing batteries with high energy/power density and long cycle-life is emphasized both in terms of industrial and academic perspectives.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2020 ◽  
Vol 8 (6) ◽  
pp. 3333-3343 ◽  
Author(s):  
Changjian Deng ◽  
Miu Lun Lau ◽  
Chunrong Ma ◽  
Paige Skinner ◽  
Yuzi Liu ◽  
...  

Nanoscale oxide-based negative electrodes are of great interest for lithium ion batteries due to their high energy/power density, and enhanced safety. The crystallinity effect of mesoporous TiO2 nanoparticle electrode was investigated in this work.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1156
Author(s):  
Andrzej P. Nowak ◽  
Maria Gazda ◽  
Marcin Łapiński ◽  
Zuzanna Zarach ◽  
Konrad Trzciński ◽  
...  

Tin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen as a carbon source. The electrode material exhibiting 467 mAh g−1 at the current density of 18 mA g−1 and a capacity fade of only 2% after 70 cycles is a potential candidate for graphite replacement. Such good electrochemical performance is due to strong interaction between amine groups from chitosan and surface hydroxyl groups of SnO2 at the preparation stage. However, the charge storage is mainly contributed by a diffusion-controlled process showing that the best results might be obtained for low current rates.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengyang Dong ◽  
Yi Wang ◽  
Chenglong Chen ◽  
Laifa Shen ◽  
Xiaogang Zhang

AbstractAqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost, high safety and eco-friendliness. However, the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications. Here, we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green “water-in-salt” electrolyte, providing wide voltage window up to 2.8 V. It facilitates the reversible function of niobium tungsten oxide, Nb18W16O93, that otherwise only operations in organic electrolytes previously. The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance, high areal capacity, and ultra-long cycling stability. An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based “water-in-salt” electrolyte, delivering a high energy density of 41.9 W kg−1, high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles.


2017 ◽  
Author(s):  
Donghai Wang ◽  
◽  
Arumugam Manthiram ◽  
Chao-Yang Wang ◽  
Gao Liu ◽  
...  

2015 ◽  
Vol 44 (16) ◽  
pp. 7123-7126 ◽  
Author(s):  
Yu Liu ◽  
Wei Wang ◽  
Yulong Ying ◽  
Yewu Wang ◽  
Xinsheng Peng

A novel binder-free layered Ti3C2/CNTs nanocomposite lithium-ion battery anode exhibits a high specific capacity and a long cycle life.


2019 ◽  
Vol 7 (6) ◽  
pp. 2694-2701 ◽  
Author(s):  
Jae-Hyung Kim ◽  
Kang-Joon Park ◽  
Suk Jun Kim ◽  
Chong S. Yoon ◽  
Yang-Kook Sun

Lithium-ion batteries with high energy density, long cycle life, and appropriate safety levels are necessary to facilitate the penetration of electrified transportation systems into the automobile market.


2017 ◽  
Vol 5 (46) ◽  
pp. 24502-24507 ◽  
Author(s):  
Bo Li ◽  
Zhujun Xiao ◽  
Ming Chen ◽  
Ziyue Huang ◽  
Xiaoyong Tie ◽  
...  

Inspired by nature, hybrid lithium-ion capacitors with both electrodes derived from rice husks are properly designed and constructed with long cycle life and ultra-high energy and power densities.


Sign in / Sign up

Export Citation Format

Share Document