scholarly journals A Novel H∞ Robust Control Strategy for Voltage Source Inverter in Microgrid

2021 ◽  
Vol 9 ◽  
Author(s):  
Hongtao Shi ◽  
Jie zhang ◽  
Jian Zhou ◽  
Yifan Li ◽  
Zhongnan Jiang

The voltage control performance of the voltage source inverter (VSI) in a microgrid may change under different load conditions. However, in the case of traditional control strategies, the robustness of VSI is insufficient. In response to the above problems, a novel robust control scheme for VSI in the microgrid based on H∞ hybrid sensitivity is proposed in this study. The grid-side interference during the VSI operation is taken as the variable, and the sensitivity function is designed to build a H∞ robust voltage controller for VSI. In addition, an adaptive virtual impedance group is designed to further improve the voltage control robustness under a variety of operation conditions. Finally, comparative simulation experiments are carried out to verify the anti-interference ability of the proposed control strategy under different working conditions.

Author(s):  
Niraj Kumar ◽  
Vishnu Mohan Mishra

Series active filters, besides the dc voltage regulators, incorporate controller such as voltage controller and hysteresis band controllers, etc.. The conventional PI controller suffers from the significant drawback of having a high content of ripples and the low speed due to variable switching frequency caused by the usage of hysteresis controllers. In order to overcome this shortcoming, two different control strategies (i.e., sinusoidal fryze voltage control and adaptive tabu search-sinusoidal fryze voltage control strategy) have been developed in this research work. The performance of SAFs has been analyzed by using these current control strategies. The proposed ATS-SFV control strategy based voltage controller yielded better performance as compared to those obtainable from the SFV control strategy. The comparisons of the proposed strategies among themselves facilitate a need-based selection of them for the supply system. To realize these control strategies, MATLAB/Simulink-based models have been developed for simulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Armel Simo Fotso ◽  
Godpromesse Kenné ◽  
Rostand Marc Douanla

This paper presents a simple and robust control strategy for a variable speed wind turbine conversion system using a squirrel-cage induction generator and a three-phase voltage source (AC/DC/AC) Pulse Width Modulation (PWM) converter connected to the utility grid through an LCL filter. The control strategy integrates for the generator side an adaptive radial basis function (RBF) neurosliding mode controller associated with the rotor flux oriented vector control which is used to regulate the turbine rotation speed, rotor flux, and the DC bus voltage. For the grid side, the inverter current and voltage regulation as well as the current injected into the grid are regulated by PI controllers for two modes of operation, namely, the stand-alone mode and grid connected mode. The main contribution of this article is the introduction of a new and simple control algorithm allowing automatic mode switching method based on wind speed. The proposed scheme is very efficient and can be easily implemented in practice. Simulation results illustrate the effectiveness and feasibility of the proposed algorithm.


2020 ◽  
Vol 102 (4) ◽  
pp. 2509-2519
Author(s):  
José Carlos Ugaz Peña ◽  
Leonardo Poltronieri Sampaio ◽  
Moacyr Aureliano Gomes de Brito ◽  
Carlos Alberto Canesin

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2407 ◽  
Author(s):  
Yu Wang ◽  
Yuewu Wang ◽  
Si-Zhe Chen ◽  
Guidong Zhang ◽  
Yun Zhang

The active power filter (APF) is a popular electrical device to eliminate harmonics in power systems. The rational design and effective control of DC-link capacitor voltage are important for implementing APF functions. In this study, the influences from the DC-link voltage on the APF compensating current characteristic and compensation performance are analyzed, and the reason to maintain DC-link voltage at a minimum value is investigated. On this basis, a simplified minimum DC-link voltage control strategy for APF is proposed. Compared with the existing DC-link voltage control strategies, the minimum DC-link voltage value in proposed strategy is only determined by the grid voltage and modulation ratio, reducing the calculation burden and the implementation difficulty in application, avoiding the interference from external parameters on the compensation effect. Additionally, the reference DC-link voltage varies at different values according to the grid voltage and modulation ratio. A shunt APF prototype is established and the experimental results verify the correctness and effectiveness of the analysis and proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document