scholarly journals Operational and financial performance of fossil fuel power plants within a high renewable energy mix

2017 ◽  
Vol 1 ◽  
pp. 2BIOTO ◽  
Author(s):  
Patrick Eser ◽  
Ndaona Chokani ◽  
Reza S. Abhari

AbstractThe operation of conventional power plants in the 2030 high-renewable energy system of central Europe with high penetration of renewables is simulated in this work. Novel insights are gained in this work, since the generation, transmission and demand models have high geographic resolution, down to scale of individual units, with hourly temporal resolution. It is shown that the increases in the partload efficiency that optimize gas power plants’ financial performance in 2030 are highly dependent on the variability in power production of renewable power plants that are in close proximity to the gas power plants. While coal power plants are also cycled more, an increased baseload efficiency is more beneficial for their financial viability. Thus, there is a need for OEMs to offer a wide range of technology solutions to cover all customers’ needs in electricity markets with high penetrations of renewables. Therefore there is an increased investment risk for OEMs as they strive to match their customers’ future needs.

Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


2021 ◽  
Vol 9 ◽  
Author(s):  
Guangming Zhang ◽  
Peiran Xie ◽  
Shuhao Huang ◽  
Zhenyu Chen ◽  
Ming Du ◽  
...  

To address climate change and environmental pollution, an increasing number of renewable energy source generations are connected to the grid; meanwhile, the need for carbon capture and pollutant reduction for traditional energy has increased in urgency. In this study, the dispatch problem for an integrated energy system (IES) is expanded considering renewable penetration, carbon capture, and pollutant reduction. First of all, detailed models of carbon and pollutants reductions systems are set up. Specifically, the carbon capture system’s characteristics, which contribute more flexibility for the conventional power plants, are clarified. In addition, the treatment process of pollutants containing SO2 and NOx is elaborated. Moreover, the structure of an evolutionary IES containing pollutants treatment, battery and thermal energy storage, and carbon capture and storage systems are put forward. On this basis, the model of IES for renewable energy penetration and environmental protection considering the constraint of pollutant ultra-low emissions is set up. Finally, the simulation results show that the proposed approach can improve renewable energy penetration and restrain carbon and pollutants emissions.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Dev Millstein ◽  
Patrick Dobson ◽  
Seongeun Jeong

Abstract Geothermal power plants have typically been operated as baseload plants. The recent expansion of wind and solar power generation creates a potential opportunity to increase the value of geothermal generation through flexible operations. In recent years, California’s wholesale electricity markets have exhibited frequent, short-term periods of negative pricing, indicating that additional flexibility would be valued in the market. Here, we examine local nodal hourly price records at all geothermal plants located in the western United States. We describe how the frequency and temporal characteristics of negative pricing episodes have changed over recent years. Based on these price series, we calculate the value of multiple strategies of flexible operations. Additionally, we use the estimates of future prices, developed through a capacity-expansion model and a dispatch model, to explore how the value of such flexible operations might change along with further penetration of variable renewable power sources. Based on the historical pricing records, we find that simple curtailment of operations during negative pricing episodes could increase the average energy value by 1–2 $/MWh and that allowing for increased production during limited high-priced hours, in addition to curtailment during negative priced hours, could potentially double the increase in value (up to 4 $/MWh). The forward-looking simulations indicate reduced values of flexibility from geothermal power despite higher penetrations of variable renewable energy. This result highlights the possibility that increasing flexibility options throughout the system may counteract the influence of increased variable renewable energy deployment.


Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 182 ◽  
Author(s):  
Lukas Kriechbaum ◽  
Thomas Kienberger

In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources.


2020 ◽  
Vol 85 ◽  
pp. 104556 ◽  
Author(s):  
Diego Godoy-González ◽  
Esteban Gil ◽  
Guillermo Gutiérrez-Alcaraz

Author(s):  
Jan Fabian Feldhoff ◽  
Carina Hofmann ◽  
Stefan Hübner ◽  
Jan Oliver Kammesheidt ◽  
Martin Kilbane ◽  
...  

It is broadly accepted that current energy systems should become more sustainable in both a global and local context. However, setting common goals and shared objectives and determining the appropriate means by which to get there is the subject of heavy debate. Therefore, the American Society of Mechanical Engineers (ASME) and the German Association of Engineers (VDI) initiated a joint project aimed at providing a young engineers’ perspective to the global energy conversation. The young engineer project teams set a common goal of assembling a completely sustainable energy system for the U.S. and Germany by 2050. This includes not only the electricity market, but the overall energy system. Based on the current global energy paradigm, a completely sustainable energy system seems very ambitious. However, multiple analyses show that this path is possible and would in the medium to long run not only be desirable, but also competitive in the market. This future ‘energy puzzle’ consists of many important pieces, and the overall picture must be shaped by an overarching strategy of sustainability. Besides the many detailed pieces, four main critical issues must be addressed by engineers, politicians and everybody else alike. These challenges are: i) Rational use of energy: This uncomfortable topic is rather unappealing to communicate, but is a key issue to reduce energy demand and to meet the potentials of renewable energy carriers. ii) Balancing of electricity demand and generation: This is a challenge to the electricity markets and infrastructures that are currently designed for base-load, mainly fossil power plants. The overall mix of renewable energy generation, storage technologies, grid infrastructure, and power electronics will decide how efficient and reliable a future energy system will be. iii) Cost efficiency and competitiveness: It is a prerequisite for industrialized countries to stay competitive and to establish RE in the market. Developing economic technologies while at the same time establishing a strong RE market is the secret of success. iv) Acceptance of the system and its consequences: The best energy strategy cannot be realized without broad public acceptance for it. Therefore, the understanding of the energy technologies and an objective discussion must be promoted — without old fashioned emotionalizing of certain risks. The paper will present details on the four mentioned aspects, compare the situations between the U.S. and Germany, and propose solutions for appropriate political frame conditions to achieve a sustainable energy system.


Sign in / Sign up

Export Citation Format

Share Document