scholarly journals Bi-Level Optimization Dispatch of Integrated-Energy Systems With P2G and Carbon Capture

2022 ◽  
Vol 9 ◽  
Author(s):  
Zongnan Zhang ◽  
Jun Du ◽  
Menghan Li ◽  
Jing Guo ◽  
Zhenyang Xu ◽  
...  

The power-to-gas (P2G) technology transforms the unidirectional coupling of power network and natural gas network into bidirectional coupling, and its operational characteristics provide an effective way for wind and solar energy accommodation. The paper proposes a bi-level optimal dispatch model for the integrated energy system with carbon capture system and P2G facility. The upper model is an optimal allocation model for coal-fired units, and the lower model is an economic dispatch model for the integrated energy system. Moreover, the upper model is solved by transforming the model into a mixed-integer linear programming problem and calling CPLEX, and the lower model is a multi-objective planning problem, which is solved by improving the small-habitat particle swarm algorithm. Finally, the simulation is validated by the MATLAB platform, and the results show that the simultaneous consideration of carbon capture system and P2G facility improves the economics of the integrated energy system and the capacity of wind and solar energy accommodation.

2021 ◽  
Vol 245 ◽  
pp. 01052
Author(s):  
Yang Yang ◽  
Mengjin Hu ◽  
Mengju Wei ◽  
Yongli Wang ◽  
Minhan Zhou ◽  
...  

Industrial parks cover a variety of production capacities and energy-consuming entities, with large load demand and complex energy-using structure, and common problems such as low energy utilization efficiency and unreasonable energy structure. The construction of an integrated energy system (IES) with a combined cooling, heating and power system as the core unit in the industrial park is of great significance for achieving reliable, efficient and clean energy use in the park. Therefore, this article is based on the integrated energy system of the industrial park, aims at the lowest total cost of park operators, and considers the constraints of grid node balance, equipment output and energy storage equipment, and constructs source-grid-load-storage linkage operation optimization model, and build a chaotic particle swarm algorithm (CPSO) to solve the model. Finally, a typical industrial park in my country is taken as an example to analyze the scientificity of the model.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 226 ◽  
Author(s):  
Woong Ko ◽  
Jinho Kim

Integrated energy systems can provide a more efficient supply than individual systems by using resources such as cogeneration. To foster efficient management of these systems, the flexible operation of cogeneration resources should be considered for the generation expansion planning model to satisfy the varying demand of energy including heat and electricity, which are interdependent and present different seasonal characteristics. We propose an optimization model of the generation expansion planning for an integrated energy system considering the feasible operation region and efficiency of a combined heat and power (CHP) resource. The proposed model is formulated as a mixed integer linear programming problem to minimize the sum of the annualized cost of the integrated energy system. Then, we set linear constraints of energy resources and describe linearized constraints of a feasible operation region and a generation efficiency of the CHP resource for application to the problem. The effectiveness of the proposed optimization problem is verified through a case study comparing with results of a conventional optimization model that uses constant heat-to-power ratio and generation efficiency of the CHP resource. Furthermore, we evaluate planning schedules and total generation efficiency profiles of the CHP resource for the compared optimization models.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Hanlin Dong ◽  
Zhijian Fang ◽  
Al-wesabi Ibrahim ◽  
Jie Cai

This research proposes an optimization technique for an integrated energy system that includes an accurate prediction model and various energy storage forms to increase load forecast accuracy and coordinated control of various energies in the current integrated energy system. An artificial neural network is utilized to create an accurate short-term load forecasting model to effectively predict user demand. The 0–1 mixed integer linear programming approach is used to analyze the optimal control strategy for multiple energy systems with storage, cold energy, heat energy, and electricity to solve the problem of optimal coordination. Simultaneously, a precise load forecasting method and an optimal scheduling strategy for multienergy systems are proposed. The equipment scheduling plan of the integrated energy system of gas, heat, cold, and electricity is proposed after researching the operation characteristics and energy use process of the equipment in the combined power supply system. A system economic operation model is created with profit maximization in mind, while also taking into account energy coordination between energy and the power grid. The rationality of the algorithm and model is verified by analyzing the real data of a distributed energy station in Wuhan for two years.


Sign in / Sign up

Export Citation Format

Share Document