scholarly journals An Optimization-Based Method for the Explicit Production Data Analysis of Gas Wells

2022 ◽  
Vol 9 ◽  
Author(s):  
Lixia Zhang ◽  
Yong Li ◽  
Xinmin Song ◽  
Mingxian Wang ◽  
Yang Yu ◽  
...  

This work aims at the exploration of production data analysis (PDA) methods without iterations. It can overcome limitations of the advanced type curve analysis relying on the iterative calculation of material-balance pseudotime and current explicit methods reckoning on specific production schedule assumptions. The dynamic material balance equation (DMBE) is strictly proved by the integral variable substitution based on the gas flow equation under the boundary dominated flow (BDF) condition and the static material balance equation (SMBE) of a gas reservoir. We introduce the pseudopressure level function γ(p) and the recovery factor function R(p) to rewrite the DMBE in terms of observed variable Y and estimated variable Ye; then the PDA can be transformed into an optimization problem of minimizing the error between Y and Ye. An optimization-based method for the explicit production data analysis of gas wells (OBM-EPDA), therefore, is developed in the paper, capable of determining the BDF constant and gas reserves explicitly and accurately for variable rate and/or variable flowing pressure systems. Three stimulated cases demonstrate the applicability and validity of OBM-EPDA with small errors less than 1% for estimated values of both reserves and Y. Not second to previous studies, the field case analysis further proves its practicability. It is shown that the nonlinear relation of γ to R can be represented by a polynomial function merely dependent on the inherent properties of the gas production system even before sorting out the production data. The errors of observed variable Y provided by OBM-EPDA facilitate the data quality control, and the elimination of outliers not subject to the BDF condition improves the reliability of the analysis. For various gas systems producing whether at a constant rate, a constant bottomhole pressure (BHP), or under variable rate and variable BHP conditions, the proposed method gives insights into the well-controlled volume and production capacity of the gas well whether in a low-pressure or high-pressure gas reservoir, where the compressibilities of rock and bound water are considered.

2014 ◽  
Vol 17 (04) ◽  
pp. 520-529 ◽  
Author(s):  
Miao Zhang ◽  
Luis F. Ayala H.

Summary This study demonstrates that production-data analysis of variable-bottomhole-flowing-pressure/variable-rate gas wells under boundary-dominated flow (BDF) is possible by use of a density-based approach. In this approach, governing equations are expressed in terms of density variables and dimensionless viscosity/compressibility ratios. Previously, the methodology was successfully used to derive rescaled exponential models for gas-rate-decline analysis of wells primarily producing at constant bottomhole pressure (Ayala and Ye 2013a, b; Ayala and Zhang 2013; Ye and Ayala 2013; Zhang and Ayala 2014). For the case of natural-gas systems experiencing BDF, gas-well-performance analysis has been made largely possible by invoking the concepts of pseudotime, normalized pseudotime, or material-balance pseudotime. The density-based methodology rigorously derived in this study, however, does not use any type of pseudotime calculations, even for variable-rate/variable-pressure-drawdown cases. The methodology enables straightforward original-gas-in-place calculations and gas-well-performance forecasting by means of type curves or straight-line analysis. A number of field and numerical case studies are presented to showcase the capabilities of the proposed approach.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Lixia Zhang ◽  
Yong Li ◽  
Xinmin Song ◽  
Mingxian Wang ◽  
Yang Yu ◽  
...  

The estimation of reserves and performance prediction are two vital tasks for the development of gas reservoirs where the evaluation of gas in place or well-controlled reserves, as the foundation of the performance analysis of gas wells, turns to be exceedingly significant. Advanced production data analysis or modern rate transient analysis (RTA) methods mainly depend on the iterative calculations of material balance quasitime ( t ca ) and type curve fitting, the essence of which is to update the average reservoir pressure data time and again. The traditional Arps’ decline models are of empirical nature despite the convenience and applicability to the constant bottomhole pressure (BHP) condition. In order to avoid the implicit iteration, this paper develops an explicit method for estimating the average reservoir pressure on the basis of dynamic material balance equation (DMBE), termed “flow integral method,” which can be applied to various gas production systems under boundary-dominated flow (BDF). Based on the flow integral method and the decline parameter evaluation, we employ the hyperbolic decline model to model the gas well performance at a constant BHP. The analytical formulations of decline rate and decline exponent are deduced from the DMBE and the static material balance equation (SMBE) considering the elastic compressibilities of rock pore and bound water. The resulting decline parameter method for explicit estimation of gas reserves boasts a solid and rigorous theory foundation that production rate, decline rate, and average reservoir pressure profiles have reference to each other, and its implementation steps are explained in the paper. The SMBE can, combined with the estimated pressure profile by the flow integral method, also be used to determine gas reserves which is not limited to the constant-BHP condition and can calibrate the estimates of the decline parameter method. The proposed methods are proven effective and reliable with several numerical cases at different BHPs and a field example.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


2012 ◽  
Vol 233 ◽  
pp. 420-424
Author(s):  
Xi Nan Yu ◽  
Hong Liu ◽  
Ji Hua Cao ◽  
Jin Pang

The material balance equation of water-drive gas reservoir does not study the effect of in-seam and intrabed water,which results the distortion of reserve.If we take acount of the effect of in-seam and intrabed water,the slope of material balance equation curve is over the back-face,and the dynamic reserve is lower than ignoring the effect of in-seam and intrabed water,the average value of dynamic reserve drops 12.16%,so we must take acount of the effect of in-seam and intrabed water to the dynamic reserve.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Lixia Zhang ◽  
Yingxu He ◽  
Chunqiu Guo ◽  
Yang Yu

Abstract Determination of gas in place (GIP) is among the hotspot issues in the field of oil/gas reservoir engineering. The conventional material balance method and other relevant approaches have found widespread application in estimating GIP of a gas reservoir or well-controlled gas reserves, but they are normally not cost-effective. To calculate GIP of abnormally pressured gas reservoirs economically and accurately, this paper deduces an iteration method for GIP estimation from production data, taking into consideration the pore shrinkage of reservoir rock and the volume expansion of irreducible water, and presents a strategy for selecting an initial iteration value of GIP. The approach, termed DMBM-APGR (dynamic material balance method for abnormally pressured gas reservoirs) here, is based on two equations: dynamic material balance equation and static material balance equation for overpressured gas reservoirs. The former delineates the relationship between the quasipressure at bottomhole pressure and the one at average reservoir pressure, and the latter reflects the relationship between average reservoir pressure and cumulative gas production, both of which are rigidly demonstrated in the paper using the basic theory of gas flow through porous media and material balance principle. The method proves effective with several numerical cases under various production schedules and a field case under a variable rate/variable pressure schedule, and the calculation error of GIP does not go beyond 5% provided that the production data are credible. DMBM-APGR goes for gas reservoirs with abnormally high pressure as well as those with normal pressure in virtue of its strict theoretical foundation, which not only considers the compressibilities of rock and bound water, but also reckons with the changes in production rate and variations of gas properties as functions of pressure. The method may serve as a valuable and reliable tool in determining gas reserves.


2015 ◽  
Vol 18 (04) ◽  
pp. 508-522 ◽  
Author(s):  
M. S. Shahamat ◽  
L.. Mattar ◽  
R.. Aguilera

Summary Analysis of production data from tight and shale reservoirs requires the use of complex models for which the inputs are rarely known. The same objectives can also be achieved by knowing only the overall (bulk) characteristics of the reservoir, with no need for all the detailed and rarely known inputs. In this study, we introduce the concept of continuous succession of pseudosteady states as a method to perform the analysis of production data. It requires few input data yet is based on rigorous engineering concepts, which works during the transient- as well as the boundary-dominated-flow periods. This method consists of a combination of three simple and well-known equations: material balance, distance of investigation, and boundary-dominated flow. It is a form of a capacitance/resistance methodology in which the material-balance equation over the investigated region represents the capacitance and the boundary-dominated-flow equation represents the resistance. The flow regime in the region of investigation (the areal extent of which varies with time during transient flow) is assumed to be pseudosteady state. This region is depleted at a rate controlled by the material-balance equation. The initial flow rate and flowing pressure are used to define the resistance, and the distance of investigation defines the capacitance. The capacitance and resistance are then used in a stepwise procedure to calculate the depletion and the new rates or flowing pressures. The method was tested, for linear-flow geometry, against analytical solutions for liquids and numerical simulations for gas reservoirs, exhibiting both transient and boundary-dominated flow. Excellent agreement was obtained, thus corroborating the validity of the method developed in this study. Two practical examples are provided to demonstrate the applicability of the methodology to forecast production from tight and shale petroleum reservoirs. The proposed method is easy to implement in a spreadsheet application. It indicates that complex systems with complicated mathematical (e.g., Laplace space) solutions can be represented adequately by use of simple concepts. The approach offers a new insight into production analysis of tight and shale reservoirs, by use of familiar and easy-to-understand reservoir-engineering principles.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minhua Cheng ◽  
Wen Xue ◽  
Meng Zhao ◽  
Guoting Wang ◽  
Bo Ning ◽  
...  

Successful exploitation of tight sandstone gas is one of the important means to ensure the “increasing reserves and production” of the oil and gas initiative and also one of the important ways to ensure national energy security. To further improve the accuracy of historical matching of field data such as gas production and bottom-hole pressure during the production process of this type of gas reservoir, in this study, a new expression of wellbore pressure for the uniform flow of vertical fractured wells in Laplace space based on the point sink function model of vertical fractures in tight sandstone gas reservoirs is constructed. This innovation is based on a typical production data analysis plot of the Blasingame type that uses the numerical inversion decoupling mathematical equation. After analyzing the pressure and pressure derivative characteristics of each flow stage in the typical curves, a new technique of type-curve matching was proposed. In order to verify the correctness of the model and the application value of the field, based on the previous production data of Sulige Gas Field in China, a new set of production data diagnostic chart of tight sandstone gas reservoir was formed. A case analysis showed that the application of the production data analysis method and data diagnosis plot in the field accurately evaluated the development effect of the tight sandstone gas reservoirs, clarified the scale of effective sand bodies, and provided technical support for optimizing and improving the well pattern and realizing the efficient development of gas fields.


Sign in / Sign up

Export Citation Format

Share Document