scholarly journals Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies

Author(s):  
Erik E. Cordes ◽  
Daniel O. B. Jones ◽  
Thomas A. Schlacher ◽  
Diva J. Amon ◽  
Angelo F. Bernardino ◽  
...  
Author(s):  
Elton J. B. Ribeiro ◽  
Zhimin Tan ◽  
Yucheng Hou ◽  
Yanqiu Zhang ◽  
Andre Iwane

Currently the oil and gas industry is focusing on challenging deep water projects, particularly in Campos Basin located coast off Brazil. However, there are a lot of prolific reservoirs located in shallow water, which need to be developed and they are located in area very far from the coast, where there aren’t pipelines facilities to export oil production, in this case is necessary to use a floating production unit able to storage produced oil, such as a FPSO. So, the riser system configuration should be able to absorb FPSO’s dynamic response due to wave load and avoid damage at touch down zone, in this case is recommended to use compliant riser configuration, such as Lazy Wave, Tethered Wave or Lazy S. In addition to, the proposed FPSO for Tubarão Martelo development is a type VLCC (Very Large Crude Carrier) using external turret moored system, which cause large vertical motion at riser connection and it presents large static offset. Also are expected to install 26 risers and umbilicals hanging off on the turret, this large number of risers and umbilicals has driven the main concerns to clashing and clearance requirement since Lazy-S configuration was adopted. In this paper, some numerical model details and recommendations will be presented, which became a feasible challenging risers system in shallow water. For instance, to solve clashing problem it is strictly recommended for modeling MWA (Mid Water Arch) gutter and bend stiffener at top I-tube interface, this recommendation doesn’t matter in deep water, but for shallow water problem is very important. Also is important to use ballast modules in order to solve clashing problems.


Author(s):  
Prashant Pralhad Kadam

Abstract: The five most important risk factors identified in the design phase are 1] scope uncertainty, 2] failed management and planning, 3] changes in errors and omissions, 4] inadequate projectS team structure, 5] inadequate quality requirements. The top five risk factors determined by the procurement category are 1] Inadequate online resources and equipment, 2] Distribution of suppliers, 3] Uncertainty in design and style, codes, requirements and standards, 4] Defective items, and 5] Compromise. The 5 most important risk factors identified in the construction phase are 1] weak project capability, 2] excessive construction costs, 3] major construction delays, 4] strong project plan, and 5] poor safety management .This was initiated by the link between risk factors and the effects on price, quality and timing, as well as the potential for expensive, common, and high-quality outcomes. Keywords: Disaster risk management, risk management strategies, project risk management, oil and gas industry.


Author(s):  
Stefano Crippa ◽  
Lorenzo Motta ◽  
Alessandro Paggi ◽  
Emanuele Paravicini Bagliani ◽  
Alessandro Elitropi ◽  
...  

Oil and Gas industry in the last decades has increased the use and need of heavy wall thickness line pipes, in particular for onshore / offshore high pressures and high temperatures (HP/HT) and offshore deep water / ultra-deep water applications. The paper presents the results achieved by Tenaris on seamless line pipes in grades X65/X70, according to API 5L / ISO 3183, with wall thickness in a range from 40 to 60 mm and diameter between 6 5/8” and 16”, produced by hot rolling process followed by quenching and tempering. Such line pipes are able to withstand very demanding conditions, like sour environment, very high pressure and wide temperature range. In this publication, the main outcomes of laboratory testing activities on the mentioned materials will be presented as part of heavy wall line pipe qualification. For this purpose, a special testing program, including mechanical and corrosion tests, has been executed. Material demonstrated an excellent behaviour, exhibiting both mechanical, toughness and stress corrosion properties suitable for the envisaged harsh applications.


2015 ◽  
Vol 12 (3) ◽  
pp. 261 ◽  
Author(s):  
Kelvin Gregory ◽  
Arvind Murali Mohan

Environmental context There is growing worldwide interest in the production of oil and gas from deep, shale formations following advances in the technical expertise to exploit these resources such as hydraulic fracturing (fracking). The potential widespread application of hydraulic fracturing has raised concerns over deleterious environmental impacts on fragile water resources. We discuss the environmental management challenges faced by the oil and gas industry, and the opportunities for innovation in the industry. Abstract The need for cheap and readily available energy and chemical feedstock, and the desire for energy independence have spurred worldwide interest in the development of unconventional oil and gas resources; in particular, the production of oil and gas from shale formations. Although these resources have been known for a long time, the technical expertise and market forces that enable economical development has coincided over the last 15 years. The amalgamation of horizontal drilling and hydraulic fracturing have enabled favourable economics for development of fossil energy from these unconventional reservoirs, but their potential widespread application has raised concerns over deleterious environmental impacts on fragile water resources. The environmental management challenges faced by the oil and gas industry arise from local water availability and infrastructure for treating and disposing of the high-strength wastewater that is produced. Although there are significant challenges, these create opportunities for innovation in the industry.


Author(s):  
Mohammad Mobasheramini ◽  
Luciene Alves ◽  
Antonio Carlos Fernandes ◽  
Gilberto Bruno Ellwanger

The oil and gas industry is headed toward deep water in recent years. Oil companies are seeking new technologies to meet the challenges of deep-water oil exploration and in the near future, this will bring new discoveries. The most difficulty of exploring oil in this region is the depth where the equipment is installed and the production lines must be safe for such activities. Full understanding of the dynamics of the behavior of this equipment is vital to the success of offshore production and operation due to environmental problems that can occur in an accident and a large amount of economic and human resources involved. The phenomenon of the vortex induced vibration (VIV) is complex and involves an interaction between hydrodynamic forces and the response of the structure. The force and displacement can be determined through experimental tests or the complete numerical simulation of the interaction between the structure and fluid. DNV-GL has recently published a guideline about the design of a subsea jumper [1], but it is still needed many studies and experiments to improve the evaluation of VIV in rigid subsea jumpers in the oil industry. The main objective of the present work is to investigate VIV phenomenon in a jumper exposed to uniform flow and verify its oscillation in the flow direction, which called inline VIV (VIVx). Throughout this study, the finite element method was used to perform the structural and modal analysis of the structure, in order to obtain the modes, frequencies and then validate the experimental result. Experimental analysis of jumpers was also performed in a current tank to evaluate the behavior of the jumper with the current flow.


2021 ◽  
Author(s):  
Amy Styslinger ◽  
David Yost ◽  
Gina Dickerson ◽  
Antoine Minois ◽  
Renee Wiwel

Abstract The Liza Phase 1 development project, offshore Guyana, is an unique example of what the offshore oil and gas industry is capable of when working together to deliver a common objective. ExxonMobil and the Stabroek Block co-venturers, Hess Guyana Exploration Limited and CNOOC Petroleum Guyana Limited, commenced oil production from the Liza Destiny floating production, storage, and offloading (FPSO) vessel in December of 2019, less than 5 years from the initial discovery of hydrocarbons in the Staebroek block. With the production and export of its first barrels of oil, the project completed the establishment of a nascent oil and gas industry in Guyana that is poised for tremendous growth in the coming years. The Liza Phase 1 development consists of a 120 kbd conversion FPSO (The Liza Destiny) and a network of subsea infrastructure to produce from and inject in two drill centers. It is expected to develop a resource of about 450 MBO gross estimated ultimate recovery. The water depth ranges from 1,690–1,860 m throughout the development which is located approximately 200 km offshore Guyana. This paper highlights the scope and pace of the project and discusses three specific challenges overcome: the uncertainty of the metocean conditions, extending the application of the selected riser technology, and executing in a challenging and frontier offshore location. A key to the success of the project was the unified approach between stakeholders and the commitment to act as One Team. The Liza Phase 1 project rapidly developed a newly discovered deep water resource in a frontier location while overcoming numerous challenges. By delivering Guyana's first ever oil production among industry leading cycle times, the Liza Phase 1 project has set the foundation for the future of deep water developments in Guyana.


2021 ◽  
Author(s):  
Andrea Sbordone ◽  
Bernt Gramstad ◽  
Per Buset ◽  
Rafael Rossi ◽  
Charlie Tramier ◽  
...  

Abstract In a continuous effort to reduce cost and improve efficiency, the Oil and Gas industry has been trying for the last 10 years to develop methods to perform subsea Coiled Tubing (CT) operations from a vessel and without a riser. In September 2020 a large campaign of Riserless Coiled Tubing (RLCT) coring was successfully executed in the Norwegian Sea, on the Mohns Ridge, approximately 330 nautical miles from the coast. The campaign was performed from a small Anchor Handler Tug Supply vessel, the Island Valiant. A total of 14 open water gravity-fed RLCT runs were executed in water depths between 2780 and 3085 m. The system performed extremely well and proved to be very robust, efficient and effective for these innovative operations. This was the first time that RLCT coring operations were completed without the use of a subsea injector, in the so-called gravity-fed mode, and in such ultra-deep water. This paper describes the project in detail, including the system setup used, a summary of the operations and the actual results achieved, before discussing future improvements and applications of the RLCT technology.


2016 ◽  
Vol 111 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
Sarah E. Hale ◽  
Amy M.P. Oen ◽  
Gerard Cornelissen ◽  
Michiel T.O. Jonker ◽  
Ivar-Kristian Waarum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document