scholarly journals Quantifying Scales of Spatial Variability of Cyanobacteria in a Large, Eutrophic Lake Using Multiplatform Remote Sensing Tools

2021 ◽  
Vol 9 ◽  
Author(s):  
Samantha L. Sharp ◽  
Alexander L. Forrest ◽  
Keith Bouma-Gregson ◽  
Yufang Jin ◽  
Alicia Cortés ◽  
...  

Harmful algal blooms of cyanobacteria are increasing in magnitude and frequency globally, degrading inland and coastal aquatic ecosystems and adversely affecting public health. Efforts to understand the structure and natural variability of these blooms range from point sampling methods to a wide array of remote sensing tools. This study aims to provide a comprehensive view of cyanobacterial blooms in Clear Lake, California — a shallow, polymictic, naturally eutrophic lake with a long record of episodic cyanobacteria blooms. To understand the spatial heterogeneity and temporal dynamics of cyanobacterial blooms, we evaluated a satellite remote sensing tool for estimating coarse cyanobacteria distribution with coincident, in situ measurements at varying scales and resolutions. The Cyanobacteria Index (CI) remote sensing algorithm was used to estimate cyanobacterial abundance in the top portion of the water column from data acquired from the Ocean and Land Color Instrument (OLCI) sensor on the Sentinel-3a satellite. We collected hyperspectral data from a handheld spectroradiometer; discrete 1 m integrated surface samples for chlorophyll-a and phycocyanin; multispectral imagery from small Unmanned Aerial System (sUAS) flights (∼12 cm resolution); Autonomous Underwater Vehicle (AUV) measurements of chlorophyll-a, turbidity, and colored dissolved organic matter (∼10 cm horizontal spacing, 1 m below the water surface); and meteorological forcing and lake temperature data to provide context to our cyanobacteria measurements. A semivariogram analysis of the high resolution AUV and sUAS data found the Critical Scale of Variability for cyanobacterial blooms to range from 70 to 175 m, which is finer than what is resolvable by the satellite data. We thus observed high spatial variability within each 300 m satellite pixel. Finally, we used the field spectroscopy data to evaluate the accuracy of both the original and revised CI algorithm. We found the revised CI algorithm was not effective in estimating cyanobacterial abundance for our study site. Satellite-based remote sensing tools are vital to researchers and water managers as they provide consistent, high-coverage data at a low cost and sampling effort. The findings of this research support continued development and refinement of remote sensing tools, which are essential for satellite monitoring of harmful algal blooms in lakes and reservoirs.

2016 ◽  
Vol 76 (s1) ◽  
Author(s):  
Mariano Bresciani ◽  
Claudia Giardino ◽  
Rosaria Lauceri ◽  
Erica Matta ◽  
Ilaria Cazzaniga ◽  
...  

Cyanobacterial blooms occur in many parts of the world as a result of entirely natural causes or human activity. Due to their negative effects on water resources, efforts are made to monitor cyanobacteria dynamics. This study discusses the contribution of remote sensing methods for mapping cyanobacterial blooms in lakes in northern Italy. Semi-empirical approaches were used to flag scum and cyanobacteria and spectral inversion of bio-optical models was adopted to retrieve chlorophyll-a (Chl-a) concentrations. Landsat-8 OLI data provided us both the spatial distribution of Chl-a concentrations in a small eutrophic lake and the patchy distribution of scum in Lake Como. ENVISAT MERIS time series collected from 2003 to 2011 enabled the identification of dates when cyanobacterial blooms affected water quality in three small meso-eutrophic lakes in the same region. On average, algal blooms occurred in the three lakes for about 5 days a year, typically in late summer and early autumn. A suite of hyperspectral sensors on air- and space-borne platforms was used to map Chl-a concentrations in the productive waters of the Mantua lakes, finding values in the range of 20 to 100 mgm-3. The present findings were obtained by applying state of the art of methods applied to remote sensing data. Further research will focus on improving the accuracy of cyanobacteria mapping and adapting the algorithms to the new-generation of satellite sensors.


Author(s):  
Jing Li ◽  
Lars-Anders Hansson ◽  
Kenneth M. Persson

Control of nutrients, mainly nitrogen (N) and phosphorus (P), plays a significant role in preventing cyanobacterial blooms (harmful algal blooms (HABs)). This study aimed at evaluating changes in the risk of the occurrence of cyanobacterial blooms and advancing the understanding of how N and P affect the growth of cyanobacteria in a eutrophic lake, Lake Vombsjön, in southern Sweden. Statistical analysis was used to demonstrate the pattern of cyanobacterial blooms, that the highest content present in September and the later that algal blooms occur, the more likely it is a cyanobacterial bloom as cyanobacteria became dominating in October and November (90%). Two hypothesises tested in Lake Vombsjön confirmed namely that a high total phosphorus (TP) level correlates with an abundance of cyanobacteria and that low N:P ratio (total nitrogen/total phosphorus < 20) favours the growth of cyanobacteria. To control the growth of cyanobacteria in Lake Vombsjön, the TP level should be kept below 20 µg/L and the N:P ratio be maintained at a level of over 20. The two species Planktothrix agardhii, and Pseudanabaena spp. should be carefully monitored especially in late autumn. Future work should consider any high degree of leakage from the sediment of the dissolved phosphorus available there.


Environments ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 60 ◽  
Author(s):  
Igor Ogashawara

Cyanobacterial harmful algal blooms (CHABs) have been a concern for aquatic systems, especially those used for water supply and recreation. Thus, the monitoring of CHABs is essential for the establishment of water governance policies. Recently, remote sensing has been used as a tool to monitor CHABs worldwide. Remote monitoring of CHABs relies on the optical properties of pigments, especially the phycocyanin (PC) and chlorophyll-a (chl-a). The goal of this study is to evaluate the potential of recent launch the Ocean and Land Color Instrument (OLCI) on-board the Sentinel-3 satellite to identify PC and chl-a. To do this, OLCI images were collected over the Western part of Lake Erie (U.S.A.) during the summer of 2016, 2017, and 2018. When comparing the use of traditional remote sensing algorithms to estimate PC and chl-a, none was able to accurately estimate both pigments. However, when single and band ratios were used to estimate these pigments, stronger correlations were found. These results indicate that spectral band selection should be re-evaluated for the development of new algorithms for OLCI images. Overall, Sentinel 3/OLCI has the potential to be used to identify PC and chl-a. However, algorithm development is needed.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Eleni Keliri ◽  
Christia Paraskeva ◽  
Angelos Sofokleous ◽  
Assaf Sukenik ◽  
Dariusz Dziga ◽  
...  

AbstractBackgroundExcess loads of nutrients finding their way into waterbodies can cause rapid and excessive growth of phytoplankton species and lead to the formation of cyanobacterial harmful algal blooms (cyano-HABs). Toxic cyanobacteria produce a broad range of bioactive metabolites, some of which are known as cyanotoxins. These metabolites can negatively impact the ecosystem, and human and animal health, thus their presence needs to be closely monitored and mitigated. This study aimed to monitor St. George Lake (Athalassa National Forest Park, Cyprus) for its water quality characteristics, and initiate a new methodology to control the bloom that occurred in the lake during summer 2019, by comparing hydrogen peroxide treatment with novel metallic peroxide granules as source of hydrogen peroxide.ResultsLake monitoring showed that pH, salinity, total dissolved solids and conductivity varied throughout the year, and nutrients concentration was high, indicating a eutrophic lake. The cyanobacteriumMerismopediasp. bloomed in the lake between June and September 2019, comprising up to 99% of the phytoplankton biovolume. The presence of microcystin synthase encoding gene (mcyB, mcyE) was documented, however microcystins were not detected by tandem mass spectroscopy. Treatment with liquid hydrogen peroxide in concentrations 1 to 5 mg L−1had no effect on the phycocyanin fluorescence (Ft) and quantum yield of PSII (Fv/Fm) indicating an ineffective treatment for the denseMerismopediabloom (1 million cells mL−1 ± 20%). Metallic peroxide granules tested for their H2O2releasing capacity in St. George Lake water, showing that CaO2released higher H2O2concentration and therefore have better mitigation efficiency than MgO2granules.ConclusionThe present study highlights the importance of monitoring several water parameters to conclude on the different actions to be taken to limit eutrophication in the catchment area. The findings demonstrated that testing for the presence of genes involved in cyanotoxin production may not be sufficient to follow cyanotoxins in the water, therefore it should be accompanied with analytical confirmation. Treatment experiments indicated that slow release of H2O2from peroxide granules may be an alternative to liquid hydrogen peroxide when applied in appropriate doses, but further investigation is needed before it is applied at the field.Graphic Abstract


2020 ◽  
Vol 7 ◽  
Author(s):  
Jennifer L. Wolny ◽  
Michelle C. Tomlinson ◽  
Stephanie Schollaert Uz ◽  
Todd A. Egerton ◽  
John R. McKay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document