scholarly journals Combining High-Resolution Land Use Data With Crowdsourced Air Temperature to Investigate Intra-Urban Microclimate

2021 ◽  
Vol 9 ◽  
Author(s):  
Julia Potgieter ◽  
Negin Nazarian ◽  
Mathew J. Lipson ◽  
Melissa A. Hart ◽  
Giulia Ulpiani ◽  
...  

The spatial variability of land cover in cities results in a heterogeneous urban microclimate, which is often not represented with regulatory meteorological sensor networks. Crowdsourced sensor networks have the potential to address this shortcoming with real-time and fine-grained temperature measurements across cities. We use crowdsourced data from over 500 citizen weather stations during summer in Sydney, Australia, combined with 100-m land use and Local Climate Zone (LCZ) maps to explore intra-urban variabilities in air temperature. Sydney presents unique drivers for spatio-temporal variability, with its climate influenced by the ocean, mountainous topography, and diverse urban land use. Here, we explore the interplay of geography with urban form and fabric on spatial variability in urban temperatures. The crowdsourced data consists of 2.3 million data points that were quality controlled and compared with reference data from five synoptic weather stations. Crowdsourced stations measured higher night-time temperatures, higher maximum temperatures on warm days, and cooler maximum temperatures on cool days compared to the reference stations. These differences are likely due to siting, with crowdsourced weather stations closer to anthropogenic heat emissions, urban materials with high thermal inertia, and in areas of reduced sky view factor. Distance from the coast was found to be the dominant factor impacting the spatial variability in urban temperatures, with diurnal temperature range greater for sensors located inland. Further differences in urban temperature could be explained by spatial variability in urban land-use and land-cover. Temperature varied both within and between LCZs across the city. Crowdsourced nocturnal temperatures were particularly sensitive to surrounding land cover, with lower temperatures in regions with higher vegetation cover, and higher temperatures in regions with more impervious surfaces. Crowdsourced weather stations provide highly relevant data for health monitoring and urban planning, however, there are several challenges to overcome to interpret this data including a lack of metadata and an uneven distribution of stations with a possible socio-economic bias. The sheer number of crowdsourced weather stations available can provide a high-resolution understanding of the variability of urban heat that is not possible to obtain via traditional networks.

2019 ◽  
Vol 11 (19) ◽  
pp. 5266 ◽  
Author(s):  
Fernando Chapa ◽  
Srividya Hariharan ◽  
Jochen Hack

Urbanization nowadays results in the most dynamic and drastic changes in land use/land cover, with a significant impact on the environment. A detailed analysis and assessment of this process is necessary to take informed actions to reduce its impact on the environment and human well-being. In most parts of the world, detailed information on the composition, structure, extent, and temporal changes of urban areas is lacking. The purpose of this study is to present a methodology to produce high-resolution land use/land cover maps by the use of free software and satellite imagery. These maps can help to understand dynamic urbanizations processes to plan, design, and coordinate sustainable urban development plans, especially in areas with limited resources and advancing environmental degradation. A series of high-resolution true color images provided by Google Earth Pro were used to do initial classifications with the Semi-Automatic Classification Plug-in in QGIS. Afterwards, a new methodology to improve the classification by the elimination of shadows and clouds, and a reduction of misclassifications through superimposition was applied. The classification was carried out for three urban areas in León, Nicaragua, with different degrees of urbanization for the years 2009, 2015, and 2018. Finally, the accuracy of the classification was analyzed using randomly defined validation polygons. The results are three sets of high-resolution land use/land cover maps of the initial and the improved classification, showing the detailed structures and temporal dynamics of urbanization. The average accuracy of classification reaches 74%, but up to 85% for the best classification. The results clearly identify advancing urbanization, the loss of vegetation and riparian zones, and threats to urban ecosystems. In general, the level of detail and simplicity of our methodology is a valuable tool to support sustainable urban management, although its application is not limited to these areas and can also be employed to track changes over time, providing therefore, relevant information to a wide range of decision-makers.


Author(s):  
P. Kumar ◽  
S. Ravindranath ◽  
K. G. Raj

<p><strong>Abstract.</strong> Rapid urbanization of Indian cities requires a focused attention with respect to preparation of Master Plans of cities. Urban land use/land cover from very high resolution satellite data sets is an important input for the preparation of the master plans of the cities along with extraction of transportation network, infrastructure details etc. Conventional classifiers, which are pixel based do not yield reasonably accurate urban land use/land cover classification of very high resolution satellite data (usually merged images of Panchromatic &amp;amp; Multispectral). Object Based Image Classification techniques are being used to generate urban land use maps with ease which is GIS compatible while using very high resolution satellite data sets. In this study, Object Based Image Analysis (OBIA) has been used to create broad level urban Land Use / Land Cover (LU/LC) map using high resolution ResourceSat-2 LISS-4 and Cartosat-1 pan-sharpened image on the study area covering parts of East Delhi City. Spectral indices, geometric parameters and statistical textural methods were used to create algorithms and rule sets for feature classification. A LU/LC map of the study area comprising of 4 major LU/LC classes with its main focus on separation of barren areas from built up areas has been attempted. The overall accuracy of the result obtained is estimated to be approximately 70%.</p>


Sign in / Sign up

Export Citation Format

Share Document