scholarly journals A Framework for Methodological Options to Assess Climatic and Anthropogenic Influences on Streamflow

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Zhang ◽  
Xiufeng Wu ◽  
Shiqiang Wu ◽  
Jiangyu Dai ◽  
Lei Yu ◽  
...  

Climate change and human activities are having increasing impacts on the global water cycle, particularly on streamflow. Current methods for quantifying these impacts are numerous and have their merits and limitations. There is a lack of a guide to help researchers select one or more appropriate methods for attribution analysis. In this study, hydrological modeling, statistical analysis, and conceptual approaches were used jointly to develop a methodological options framework consisting of three modules, to guide researchers in selecting appropriate methods and assessing climatic and anthropogenic contributions to streamflow changes. To evaluate its effectiveness, a case study in the Upper Yangtze River Basin (UYRB) of China was conducted. The results suggest that the SWAT-based method is the best approach to quantify the influences of climate change and human activities on streamflow in the UYRB. The comprehensive assessment indicates that climate change is the dominant cause of streamflow changes in the UYRB, and the contribution of climate change, indirect human activities, and direct human activities to streamflow changes is about 7:1:2. The proposed framework is efficient and valuable in assisting researchers to find appropriate methods for attribution analysis of streamflow changes, which can help to understand the water cycle in changing environments.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1809
Author(s):  
Xuchun Ye ◽  
Zengxin Zhang ◽  
Chong-Yu Xu ◽  
Jia Liu

Characterized by increasing surface air temperature, global warming has altered the hydrological cycle at global and regional scales. In order to adapt water resources management under the context of global warming, attribution analysis on regional differentiation of water resources in the Yangtze River basin (YRB) was conducted in this study. Meteoro-hydrological variations across the basin were examined for the period 1960–2013, and then a statistic-based method was applied in quantifying the contributions of climate variability and human activities on annual runoff variations in different tributary sub-basins in the YRB. Our observation indicates that both the annual increasing rate and the inter-annual fluctuations of temperature in China and in the YRB were higher than that of the global average since the turn of the century. Climate change analysis indicates that the YRB experienced a hot-wet period during 1994–2002 and a hot-dry period during 2003–2013, since the step change of temperature in 1993. Contributions of climate change and human activities on runoff variations varied spatially in the basin. With reference to the baseline period of 1960–1993, the contribution of climate change played a dominant role in most regions of the basin, especially in those upstream sub-basins. The effect of human activities in the basin was quite complicated, not only its regional differentiation, but also its contribution were opposite during the hot-wet period and the hot-dry period in some sub-basins. The result of this study is helpful in understanding the impacts of climate change and human activities on water resources variation in both temporal and spatial scales.


2016 ◽  
Vol 141 (3) ◽  
pp. 533-546 ◽  
Author(s):  
Buda Su ◽  
Jinlong Huang ◽  
Xiaofan Zeng ◽  
Chao Gao ◽  
Tong Jiang

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2072
Author(s):  
Liuzzo ◽  
Freni

Recent studies have pointed out that climate change is likely to have important implications on the extent and frequency of flooding events. Indeed, the intensification of the water cycle occurring in different areas of the world can dramatically affect the incidence of extreme events and, consequently, the flow in rivers or artificial channels, increasing the probability of disastrous floods. In this context, the criteria for the assessment of flood risk need to be improved to take into account the variability of rainfall due to climate change. In this study, a Bayesian procedure was used to update the parameters of the depth–duration–frequency (DDF) curves and quantify the uncertainty related to their assessment in some climate change scenarios. The critical storm obtained from these updated DDF curves was used as input for the FLO-2D hydraulic model, in order to investigate the effects of climate change on flood risk. The area of study was an urban catchment in Piazza Armerina, a small town located in Southern Italy. Results showed that rainfall variations remarkably affect not only the magnitude of flood events, but also the flood susceptibility of the study area.


Sign in / Sign up

Export Citation Format

Share Document