scholarly journals The Dynamic Hypercube as a Niche Community Model

2021 ◽  
Vol 9 ◽  
Author(s):  
John M. Halley ◽  
Stuart L. Pimm

Different models of community dynamics, such as the MacArthur–Wilson theory of island biogeography and Hubbell’s neutral theory, have given us useful insights into the workings of ecological communities. Here, we develop the niche-hypervolume concept of the community into a powerful model of community dynamics. We describe the community’s size through the volume of the hypercube and the dynamics of the populations in it through the fluctuations of the axes of the niche hypercube on different timescales. While the community’s size remains constant, the relative volumes of the niches within it change continuously, thus allowing the populations of different species to rise and fall in a zero-sum fashion. This dynamic hypercube model reproduces several key patterns in communities: lognormal species abundance distributions, 1/f-noise population abundance, multiscale patterns of extinction debt and logarithmic species-time curves. It also provides a powerful framework to explore significant ideas in ecology, such as the drift of ecological communities into evolutionary time.

2018 ◽  
Author(s):  
Andres Laan ◽  
Gonzalo G. de Polavieja

AbstractEcological models of community dynamics fall into two main categories. The neutral theory of biodiversity correctly predicts various large-scale ecosystem characteristics such as the species abundance distributions. On a smaller scale, the niche theory of species competition explains population dynamics and interactions between two to a dozen species. Despite the successes of the two theories, they rely on two contradictory assumptions. In the neutral theory each species is competitively equivalent while in the niche theory every species is specialized to exploit a specific part of its environment. Here we propose a resolution to this contradiction using a game theory model of competition with an attractor hyperplane as its equilibrium solution. When the population dynamics shifts within the hyperplane, it is selectively neutral. However, any movement perpendicular to the hyperplane is subject to restoring forces similar to what is predicted by the niche theory. We show that this model correctly reproduces empirical species abundance distributions and is also compatible with species removal experiments.


2019 ◽  
Author(s):  
Rafael D’Andrea ◽  
Theo Gibbs ◽  
James P. O’Dwyer

AbstractNeutral theory assumes all species and individuals in a community are ecologically equivalent. This controversial hypothesis has been tested across many taxonomic groups and environmental contexts, and successfully predicts species abundance distributions across multiple high-diversity communities. However, it has been critiqued for its failure to predict a broader range of community properties, particularly regarding community dynamics from generational to geological timescales. Moreover, it is unclear whether neutrality can ever be a true description of a community given the ubiquity of interspecific differences, which presumably lead to ecological inequivalences. Here we derive analytical predictions for when and why non-neutral communities of consumers and resources may present neutral-like outcomes, which we verify using numerical simulations. Our results, which span both static and dynamical community properties, demonstrate the limitations of summarizing distributions to detect non-neutrality, and provide a potential explanation for the successes of neutral theory as a description of macroecological pattern.Author SummaryThe neutral theory of biodiversity assumes that species are ecologically equivalent. Given the natural history observation of ubiquitous phenotypic differences between species, it is surprising that neutral theory has successfully predicted a broad range of biodiversity patterns, and simultaneously unsurprising that these results have not convinced ecologists that the natural world is neutral. However, we have lacked a description of how neutrality can emerge in a natural way from ecological mechanisms and species differences. Our study sheds light on this question, providing a theoretical backdrop for the success of neutral theory as a description of macroecological pattern. We derive a prediction for the degree to which consumers must differ in preferences for different resources before the resulting biodiversity patterns become distinguishable from neutrality. These predictions, which we confirm using simulations, show that neutral-like outcomes are possible even when resource requirements across consumers are very far from neutral. Our results can be tested in experimental microbial communities, where, equipped with an inferred consumption network, our analysis can yield predictions for biodiversity patterns and community turnover at different taxonomic levels.


2019 ◽  
Author(s):  
Brian Joseph Enquist ◽  
Xiao Feng ◽  
Bradley Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant species observation data in order to quantify the fraction of Earth’s extant land plant biodiversity that is common versus rare. Tests of different hypotheses for the origin of species commonness and rarity indicates that sampling biases and prominent models such as niche theory and neutral theory cannot account for the observed prevalence of rare species. Instead, the distribution of commonness is best approximated by heavy-tailed distributions like the Pareto or Poisson-lognormal distributions. As a result, a large fraction, ~36.5% of an estimated ~435k total plant species, are exceedingly rare. We also show that rare species tend to cluster in a small number of ‘hotspots’ mainly characterized by being in tropical and subtropical mountains and areas that have experienced greater climate stability. Our results indicate that (i) non-neutral processes, likely associated with reduced risk of extinction, have maintained a large fraction of Earth’s plant species but that (ii) climate change and human impact appear to now and will disproportionately impact rare species. Together, these results point to a large fraction of Earth’s plant species are faced with increased chances of extinction. Our results indicate that global species abundance distributions have important implications for conservation planning in this era of rapid global change.


2019 ◽  
Vol 5 (11) ◽  
pp. eaaz0414 ◽  
Author(s):  
Brian J. Enquist ◽  
Xiao Feng ◽  
Brad Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


2015 ◽  
Vol 282 (1819) ◽  
pp. 20151700 ◽  
Author(s):  
Frank T. Burbrink ◽  
Alexander D. McKelvy ◽  
R. Alexander Pyron ◽  
Edward A. Myers

Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.


1993 ◽  
Vol 23 (10) ◽  
pp. 2216-2229 ◽  
Author(s):  
R. Neal Wilkins ◽  
Wayne R. Marion ◽  
Daniel G. Neary ◽  
George W. Tanner

Differential responses of vascular plant community compositions, diversities, and species-abundance distributions to hexazinone site preparation were evaluated on three 1-year-old clearcuts, each representing a point along a generalized edaphic gradient (xeric sandhill, mesic flatwoods, and hydric hammock). Foliar cover by species was sampled along four 20-m permanent line transects within each of three blocked replications of hexazinone treatments (0.0, 1.7, 3.4, and 6.8 kg/ha) at pretreatment and after the first and second growing seasons post-treatment. Cover by woody species decreased with increasing hexazinone rates on all sites (P < 0.05). Herbaceous vegetation recovered from first-season reductions to levels that did not vary with treatment (xeric sandhill and mesic flatwoods) or increased with increasing hexazinone rates (hydric hammock). Hexazinone tolerance by Gelsemiumsempervirens (L.) Ait.f. and Vaccinium spp. on the xeric sandhill and Ilexglabra (L.) Gray and G. sempervirens on the mesic flatwoods influenced diversity responses by woody and herbaceous vegetation. With increasing rates, herbaceous diversity decreased on the xeric sandhill, did not vary on the mesic flatwoods, and increased on the hydric hammock. Plant community responses to hexazinone were found to be functions of application rate, edaphic factors, adaptive strategies of resident species, and the presence or absence of hexazinone-tolerant species.


2019 ◽  
Author(s):  
Jacopo Grilli

How coexistence of many species is maintained is a fundamental and unanswered question in ecology. Coexistence is a puzzle because we lack a quantitative understanding of the variation in species presence and abundance. Whether variation in ecological communities is driven by deterministic or random processes is one of the most controversial issues in ecology. Here, we study the variation of species presence and abundance in microbial communities from a macroecological standpoint. We identify three novel, fundamental, and universal macroecological laws that characterize the fluctuation of species abundance across communities and over time. These three laws — in addition to predicting the presence and absence of species, diversity and other commonly studied macroecological patterns — allow to test mechanistic models and general theories aiming at describing the fundamental processes shaping microbial community composition and dynamics. We show that a mathematical model based on environmental stochasticity quantitatively predicts the three macroecological laws, as well as non-stationary properties of community dynamics.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150226 ◽  
Author(s):  
Olivier Missa ◽  
Calvin Dytham ◽  
Hélène Morlon

Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time.


Sign in / Sign up

Export Citation Format

Share Document