scholarly journals Phylogeographic Analyses of the East Asian Endemic Genus Prinsepia and the Role of the East Asian Monsoon System in Shaping a North-South Divergence Pattern in China

2019 ◽  
Vol 10 ◽  
Author(s):  
Xiangguang Ma ◽  
Zhiwei Wang ◽  
Bin Tian ◽  
Hang Sun
2013 ◽  
Vol 26 (14) ◽  
pp. 5183-5195 ◽  
Author(s):  
Qiaoyan Wu ◽  
Ying Yan ◽  
Dake Chen

Abstract A linear Markov model has been developed to predict the short-term climate variability of the East Asian monsoon system, with emphasis on precipitation variability. Precipitation, sea level pressure, zonal and meridional winds at 850 mb, along with sea surface temperature and soil moisture, were chosen to define the state of the East Asian monsoon system, and the multivariate empirical orthogonal functions of these variables were used to construct the statistical Markov model. The forecast skill of the model was evaluated in a cross-validated fashion and a series of sensitivity experiments were conducted to further validate the model. In both hindcast and forecast experiments, the model showed considerable skill in predicting the precipitation anomaly a few months in advance, especially in boreal winter and spring. The prediction in boreal summer was relatively poor, though the model performance was better in an ENSO decaying summer than in an ENSO developing summer. Also, the prediction skill was better over the ocean than the land. The model's forecast ability is attributed to the domination of the East Asian monsoon climate variability by a few distinctive modes in the coupled atmosphere–ocean–land system, to the strong influence of ENSO on these modes, and to the Markov model's capability to capture these modes.


2019 ◽  
Vol 23 (6) ◽  
pp. 2525-2540 ◽  
Author(s):  
Astrid Fremme ◽  
Harald Sodemann

Abstract. The Yangtze River valley (YRV) experiences large intraseasonal and interannual precipitation variability, which is mainly due to East Asian monsoon influence. The East Asian monsoon is caused by interaction of many processes in the coupled land–atmosphere–ocean system. To better understand YRV precipitation variability in this complex system, we have studied the precipitation moisture sources and their connection to YRV precipitation. We obtained the moisture sources by using the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-Interim reanalysis dataset, the FLEXible PARTicle dispersion model (FLEXPART), and the WaterSip moisture source diagnostic. The variability of moisture sources reflects the variability of YRV precipitation. Intraseasonal variations of moisture sources include a shift of the most important source regions as the monsoon progresses. Interannual variability of the moisture sources shows that sources which are less important climatologically are closely connected to variations of the driest and wettest years. Our results show that land directly contributes 58 % of moisture for YRV precipitation during 1980–2016, whereas the ocean contributes 42 % in direct transport. While the importance of the ocean as a moisture source is often emphasized, our results underscore the importance of the process of continental recycling and the role of land moisture sources.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax1697 ◽  
Author(s):  
Alex Farnsworth ◽  
Daniel J. Lunt ◽  
Stuart A. Robinson ◽  
Paul J. Valdes ◽  
William H. G. Roberts ◽  
...  

The East Asian monsoon plays an integral role in human society, yet its geological history and controlling processes are poorly understood. Using a general circulation model and geological data, we explore the drivers controlling the evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO2. We associate increased precipitation since the Late Cretaceous with the gradual uplift of the Himalayan-Tibetan region, transitioning from an ITCZ-dominated monsoon to a sea breeze–dominated monsoon. The rising region acted as a mechanical barrier to cold and dry continental air advecting into the region, leading to increasing influence of moist air from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon system has existed in East Asia since at least the Early Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document