scholarly journals New QTLs for Spot Blotch Disease Resistance in Wheat (Triticum aestivum L.) Using Genome-Wide Association Mapping

2021 ◽  
Vol 11 ◽  
Author(s):  
Vipin Tomar ◽  
Daljit Singh ◽  
Guriqbal Singh Dhillon ◽  
Ravi Prakash Singh ◽  
Jesse Poland ◽  
...  

Spot blotch disease caused by Bipolaris sorokiniana is a major constraint for wheat production in tropics and subtropics. The introgression of spot blotch resistance alleles to the disease susceptible lines is critical to securing the wheat production in these regions. Although genome-wide association studies (GWASs) for spot blotch were attempted earlier, the present study focused on identifying new quantitative trait loci (QTLs) for spot blotch under natural disease pressure in diverse field conditions. A total of 139 advanced spring wheat lines were evaluated in three environments (three years and two locations) in India and Bangladesh. The GWAS using 14,063 polymorphic genotyping-by-sequencing (GBS) markers identified eight QTLs associated with spot blotch disease resistance belonging to eight chromosomes across the wheat genome. Here, we report the identified marker–trait associations (MTAs), along with the allele effects associated with the disease. The functional annotation of the significant markers identified NBS-LRR, MADS-box transcription factor, and 34 other plant-related protein families across multiple chromosomal regions. The results indicate four promising new QTLs on chromosomes 1A (497.2 Mb), 1D (89.84 Mb), 2B (421.92 Mb), and 6D (6.84 Mb) associated with several disease resistance protein families. These results provide insights into new genomic regions associated with spot blotch disease, and with additional validation, could be utilized in disease resistance breeding efforts in wheat development.

2018 ◽  
Vol 108 (11) ◽  
pp. 1307-1314 ◽  
Author(s):  
Muhammad Jamil ◽  
Aamir Ali ◽  
Alvina Gul ◽  
Abdul Ghafoor ◽  
Amir M. H. Ibrahim ◽  
...  

Spot blotch is a severe biotic menace of wheat caused by Cochliobolus sativus (syn. Bipolaris sorokiniana). Spot blotch is liable to major yield losses in warm humid regions. A genome-wide association study using genotyping-by-sequencing (GBS) markers was conducted to identify genomic regions associated with spot blotch resistance in a diversity panel of 159 spring wheat genotypes. In total, 87,096 GBS markers covering the whole genome, with an average polymorphism information content value of 0.276, were applied. Linkage disequilibrium (LD) analysis indicated that the LD decay extent was approximately 100 Mbp. The panel was evaluated for disease severity (DS) and area under disease progress curve (AUDPC) for 2 years. In total, 24 marker-trait associations (MTA) were identified for DS and AUDPC of spot blotch, with 11 on chromosome 5B, 3 on 3A, 2 on 6B, and 1 each on 1A, 2A, 1D, 2D, 4B, 5A, 7A, and 7B. A marker on chromosome 7B significantly explained 14% of the phenotypic variation of spot blotch severity as well as 11% of AUDPC. Five markers—three on chromosome 5B, one on 3A, and one on 7B—were associated with both DS and AUDPC with R2 ranging from 8 to 12%. Significant MTA can be utilized to develop wheat germplasm with resistance to spot blotch.


2016 ◽  
Vol 106 (10) ◽  
pp. 1139-1151 ◽  
Author(s):  
Hao-Xun Chang ◽  
Alexander E. Lipka ◽  
Leslie L. Domier ◽  
Glen L. Hartman

Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.


2019 ◽  
Vol 109 (4) ◽  
pp. 623-631 ◽  
Author(s):  
Xiping Yang ◽  
Sushma Sood ◽  
Ziliang Luo ◽  
James Todd ◽  
Jianping Wang

Sugarcane (Saccharum spp.) supplies globally ∼80% of table sugar and 60% of bioethanol. Sugarcane orange rust and Sugarcane yellow leaf virus (SCYLV) are major sugarcane diseases, causing up to 50 and 40% yield losses, respectively. Sugarcane cultivars resistant to these diseases are needed to sustain sugarcane production in several regions. Dissecting DNA sequence variants controlling disease resistance provides a valuable tool for fulfilling a breeding strategy to develop resistant cultivars. In this study, we evaluated disease reactions to orange rust and SCYLV of a sugarcane diversity panel in repeated trials. We conducted a genome-wide association study between high-density markers and disease resistance reactions. We identified 91 putative DNA markers and 82 candidate genes significantly associated with resistance to one of the two diseases. These provide an important genetic resource for finding genes and molecular markers for disease resistance. Our results emphasized the importance of utilizing a wide germplasm collection for breeding resistant sugarcane cultivars.


Sign in / Sign up

Export Citation Format

Share Document