scholarly journals SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes

2021 ◽  
Vol 12 ◽  
Author(s):  
Yogita Chhichholiya ◽  
Aman Kumar Suryan ◽  
Prabhat Suman ◽  
Anjana Munshi ◽  
Sandeep Singh

miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.

Author(s):  
Rui-Ru Ji

Common diseases or traits in humans are often influenced by complex interactions among multiple genes as well as environmental and lifestyle factors rather than being attributable to a genetic variation within a single gene. Identification of genes that confer disease susceptibility can be facilitated by studying DNA markers such as single nucleotide polymorphism (SNP) associated with a disease trait. Genome-wide association approaches offers a systematic analysis of the association of hundreds of thousands of SNPs with a quantitative complex trait. This method has been successfully applied to a wide variety of common human diseases and traits, and has generated valuable findings that have improved the understanding of the genetic basis of many complex traits. This chapter outlines the general mapping process and methods, highlights the success stories, and describes some limitations and challenges that lie ahead.


2011 ◽  
Vol 70 (3) ◽  
pp. 365-373 ◽  
Author(s):  
John Hesketh ◽  
Catherine Méplan

Micronutrients are essential for optimal human health. However, in some cases, raising intake by supplementation has not proven to be beneficial and there is even some evidence that supplementation may increase disease risk, highlighting the importance of assessing the functional status of micronutrients. Techniques such as gene microarrays and single-nucleotide polymorphism analysis have the potential to examine effects of micronutrient intake on patterns of gene expression and inter-individual variation in micronutrient metabolism. Recent genomic research related to selenium (Se) provides examples illustrating how studies of functional single-nucleotide polymorphism and gene expression patterns can reveal novel biomarkers of micronutrient function. Both in vitro and in vivo experiments show that there are functionally relevant polymorphisms in genes encoding glutathione peroxidases 1, 3 and 4, selenoprotein P, selenoprotein S and the 15 kDa selenoprotein. Disease association studies investigating these gene variants have so far been relatively small but an association of a polymorphism in the selenoprotein S gene with colorectal cancer risk has been replicated in two distinct populations. Future disease association studies should examine effects of multiple variants in combination with nutritional status. Gene microarray studies indicate that changes in Se intake alter expression of components of inflammatory, stress response and translation pathways. Our hypothesis is that Se intake and genetic factors have linked effects on stress response, inflammation and apoptotic pathways. Combining such data in a systems biology approach has the potential to identify both biomarkers of micronutrients status and sub-group populations at particular risk.


Oncogene ◽  
2005 ◽  
Vol 24 (12) ◽  
pp. 2042-2049 ◽  
Author(s):  
Oksana Moshynska ◽  
Igor Moshynskyy ◽  
Vikram Misra ◽  
Anurag Saxena

Sign in / Sign up

Export Citation Format

Share Document