scholarly journals Impact of Enriched Environment on Murine T Cell Differentiation and Gene Expression Profile

2016 ◽  
Vol 7 ◽  
Author(s):  
Lorenza Rattazzi ◽  
Giuseppa Piras ◽  
Samuel Brod ◽  
Koval Smith ◽  
Masahiro Ono ◽  
...  
2017 ◽  
Vol 1 (suppl_1) ◽  
pp. 459-460
Author(s):  
S. Yeh ◽  
K. Yang ◽  
L. Lin ◽  
M. Lee ◽  
C. Hsieh ◽  
...  

2018 ◽  
Vol 29 ◽  
pp. viii219-viii220
Author(s):  
S.Y. Rha ◽  
G.Y. Ku ◽  
H.S. Kim ◽  
H.C. Chung ◽  
F.G. Amlashi ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4085-4085
Author(s):  
Giovanni Fernando Torelli ◽  
Roberta Maggio ◽  
Nadia Peragine ◽  
Sabina Chiaretti ◽  
Maria Stefania De Propris ◽  
...  

Abstract Abstract 4085 Poster Board III-1020 Introduction Umbilical cord blood (CB) stem cells are now broadly used in the unrelated stem cell transplant setting and comparative studies with different stem cell sources have shown that CB transplant is characterized by a lower risk of graft-versus-host disease (GVHD). The immaturity of CB T cells has been generally regarded as the main contributing factor accounting for this phenomenon; the possible role played by CB regulatory T cells (Tregs) for the suppression of the allogeneic T-cell response is now under investigation, but very scare data are so far available. Aim of this study was to analyze and compare the functional properties and the gene expression profile of Tregs expanded from CB units with those expanded from the peripheral blood (PB) of adult normal donors. Methods Tregs were purified from mononuclear cells obtained from 23 CB units and from the PB of 13 adult normal donors using the CD4+CD25+ regulatory T-cell isolation kit (Miltenyi Biotec) and expanded for 6 days in 96-well U-Bottom plates coated with the anti-CD3 (5 ug/ml) and anti-CD28 (5 ug/ml) MoAbs in the presence of IL-2 (100 U/ml). Immunophenotypic analyses were performed before and after expansion. To assess their suppressive functions, expanded Tregs were seeded with autologous effector T cells stimulated with allogeneic dendritic cells (DC) pulsed with apoptotic leukemic blasts, then incubated with [3H]-thymidine and counted in a beta-counter. Suppressor activity was measured as [3H]-thymidine incorporation in the presence or absence of Tregs. The IL-10 production capacity of expanded Tregs was tested using an ELISA assay. The two-sided student t test was used to evaluate the significance of differences between groups. Gene expression profile experiments were performed using the HGU133 Plus 2.0 arrays (Affymetrix); statistical analyses were carried out using the dChip software; a t test was used to evaluate the presence of specifically expressed classes of genes. Functional annotation analysis was performed using the DAVID software. Results CB and PB Tregs presented similar immunophenotypic appearances before and after expansion. Im particular, after expansion they presented a comparable expression of surface CD4, CD25, CD62L, CCR5 and CD45RO, and of cytoplasmic CTLA-4 and Foxp3, while they both were negative for the CD45RA antigen, thus indicating the loss of their naïve features. On the contrary, Tregs obtained from CB (n=23) presented a much higher expansion capacity compared to those obtained from PB (n=13): mean fold increase (range), CB 10.3 (1.6-24), PB 3.9 (1.5-10), p 0.003. CB expanded Tregs (n=6) exerted a potent suppressive function on the proliferative reaction of T cells stimulated by allogeneic DC, that resulted inferior even though not significantly compared to that exerted by PB expanded Tregs (n=5): mean fold reduction (range), CB 7.8 (2.5-15.1), PB 14.3 (1.5-23.7), p 0.14. Tregs expanded from CB (n=4) and PB (n=1) presented a high and comparable in vitro IL-10 production capacity: mean pg/ml (range), CB 326.5 (226-426), PB 382. Gene expression profile analysis showed a higher number of upregulated genes in Tregs expanded from CB (n=2) compared to Tregs expanded from PB (n=3); among them, a significant enrichment of genes involved in cell proliferation, cell cycle checkpoints, signal transduction, cell differentiation, apoptosis, TGF-β receptor pathway and the GrNH pathway was observed. This suggests that CB Tregs retain a more undifferentiated program and are characterized by the high expression of genes which might provide an advantage in cell expansion. Finally, when looking at the Foxp3 gene expression levels, no difference was observed between the two populations. Conclusions These results demonstrate that Tregs contained in CB retain an expansion potential superior to that of Tregs isolated from the PB of normal donors, as confirmed by functional analyses and gene profile. Tregs expanded from CB and PB seem to exert a potent and comparable suppressive function of the proliferative effect in mixed lymphocyte reaction assays. The maintaining of the modulatory properties after expansion is confirmed by the expression of the Foxp3 gene and protein, and by the production of IL-10. These data offer further insights into the understanding of the biology of CB transplantation indicating a possible role played by CB Tregs in the suppression of the allogeneic T-cell response. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 289-289 ◽  
Author(s):  
Laurence de Leval ◽  
David Rickman ◽  
Caroline Thielen ◽  
Aurélien de Reynies ◽  
Yen-Lin Huang ◽  
...  

Abstract AITL and PTCL-U, the two most common forms of T-cell lymphomas in western countries, usually present as nodal disease and pursue an aggressive clinical course. AITL is commonly associated with a constellation of clinical symptoms and distinct pathological features. Conversely, PTCL-U lacks precise diagnostic criteria, and by default comprises cases not fulfilling criteria for other entities, including tumors with borderline features to ALCL and AITL. The genetic alterations and pathogenic mechanisms underlying AITL and PTCL-U are largely unknown. To determine whether the molecular signature of AITL and PTCL-U could help in distinguishing both entities and in understanding ther ontogeny, we performed gene expression profile (GEP) analysis of 15 PTCL-U tissue samples (6 CD30+ and 9 CD30−) and 19 AITL samples (including 2 sorted tumor cell suspensions) using Affymetrix HG-U133A Plus2.0 pan-genomic oligonucleotide microarrays, with comparison to that of previously published normal T-cell subsets (J Immunol173:68; J Immunol175: 7837; Blood 104: 1952). Principle component analysis (PCA, accumulated variance 95%) of all 33 tissue samples yielded three groups of tumors: one group of 12 AITLs, one group of 10 PTCLs-U and one mixed group comprising 5 AITLs (some with features borderline to PTCL-U) and 6 PTCLs-U (including 5 of 6 CD30+ tumors). The AITL molecular signature consisted of 442 genes with increased levels of expression in AITL compared to PTCL-U (t test, p<0.002), including genes encoding cell adhesion molecules, immune receptors, extracellular matrix components and several chemokines, B-cell-related and follicular dendritic cell-related genes, genes involved in endothelial and vascular biology, and several genes reported to belong to the gene expression signature of normal TFH cells (CXCL13, BCL6, PDCD1, CD40L, CD200). To specifically address the question of a molecular link beween AITL and TFH cells, we performed gene set enrichment analysis (GSEA) of our dataset using published gene sets specific of distinct normal T-cell subsets (TFH, TH1, TH2). Compared to that of PTCL-U, the molecular signature of AITL was significantly enriched in TFH-specific genes, and the enrichment was even higher for sorted AITL cells compared to AITL tissues. GSEA failed to disclose a molecular link between PTCL-U and known T-cell subsets (TH1, TH2, TFH). Compared to CD30− PTCL-U, CD30+ PTCL-U had lower expression of genes involved in TCR signalling (t test, p<0.002), and showed molecular similarities with ALK-negative ALCL. In conclusion, GEP of non-anaplastic nodal PTCL (1) segregates AITL and PTCL-U, supporting the basis for histotyping; (2) shows molecular analogies between AITL and TFH cells, strongly supporting the hypothesis of a histogenetic link; (3) suggests molecular analogies between CD30+ PTCL-U and ALK-negative ALCL.


Sign in / Sign up

Export Citation Format

Share Document