scholarly journals Transitional B Cells in Early Human B Cell Development – Time to Revisit the Paradigm?

2016 ◽  
Vol 7 ◽  
Author(s):  
Victoria G. Martin ◽  
Yu-Chang Bryan Wu ◽  
Catherine L. Townsend ◽  
Grace H. C. Lu ◽  
Joselli Silva O’Hare ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1352-1352
Author(s):  
Marit E. Hystad ◽  
Trond H. Bo ◽  
Edith Rian ◽  
June H. Myklebust ◽  
Einar Sivertsen ◽  
...  

Abstract B cells develop from hematopoietic stem cells (HSC) in the bone marrow (BM) through a number of distinct stages before they migrate to the periphery as naïve mature B lymphocytes. These developmental stages can be identified by expression of cell surface antigens and Ig gene rearrangement status. The aim of this study was to characterize the earliest steps of normal human B cell development by gene expression profiling. Immunomagnetic selection and subsequent fluorescence-activated cell sorting (FACS) were used to isolate five populations from adult human BM: CD34+CD38− (HSC), CD34+CD10+CD19− early lymphoid progenitor cells (ELP), CD34+CD10+CD19+IgM− progenitor B cells (pro-B), CD34−CD10+CD19+IgM− precursor B cells (pre-B) and CD34−CD10+CD19+IgM+ immature B cells (IM). Total RNA was extracted from the purified cell populations, amplified and hybridized to Lymphochip cDNA microarrays. Six independent experiments from different donors were performed for each cell population. Expression of the genes encoding the selection markers confirmed the validity of the approach. Interestingly, genes necessary for the V(D)J-recombination such as RAG-1, RAG-2, TdT and ADA showed higher gene expression in the ELP population than in the HSC. In contrast, the transcription factors E2A, EBF, and Pax-5, which are all essential for early B-cell development, were first turned on in pro-B cells, in accordance with the B-cell lineage commitment. The ELP did not express B, T or NK lineage markers, except for a higher expression level of CD2 in the ELP population than in the four other cell populations. Taken together, the expression pattern of CD2 and the V(D)J-recombination genes in the ELP population, indicate that these cells have developed a lymphocyte potential, but are not fully committed to B-lineage cells. Hierarchical cluster analysis of the 758 differentially expressed genes (differences in relative expression by a factor of two or more and with maximum10% FDR) revealed a pattern that clearly separated the five consecutive cell populations. Furthermore, we created expression signatures based on information from Gene Ontology (GO) http://source.stanford.edu/cgi-bin/source/sourceSearch. One of the clearest distinctions between the gene expressions of the five developmental populations involved genes associated with proliferation, and showed that the HSC and IM populations are relatively indolent while the pro-B and pre-B populations comprised high expression levels of nearly all the proliferation associated genes. Finally, we examined in further detail the transitions between HSC, ELP and pro B cells. We found 25 genes to be differently expressed in the ELP population in comparison to the HSC and pro-B populations, including IGJ, BCL2 and BLNK. To identify combinations of markers that could better discriminate the ELP population, we also performed a gene pair class separation test. This resulted in 68 gene pairs with score above 10 that were denoted very good discriminators. For several of the markers the differences in gene expression were verified at the protein level by five colour FACS analysis. Taken together, these results provide new insight into the molecular processes that take place in the early human B cell differentiation, and in particular provide new information regarding expression of genes in the ELP population.


2019 ◽  
Vol 12 (604) ◽  
pp. eaaw5573 ◽  
Author(s):  
Jocelyn R. Farmer ◽  
Hugues Allard-Chamard ◽  
Na Sun ◽  
Maimuna Ahmad ◽  
Alice Bertocchi ◽  
...  

Transitional B cells must actively undergo selection for self-tolerance before maturing into their resting follicular B cell successors. We found that metabolic quiescence was acquired at the follicular B cell stage in both humans and mice. In follicular B cells, the expression of genes involved in ribosome biogenesis, aerobic respiration, and mammalian target of rapamycin complex 1 (mTORC1) signaling was reduced when compared to that in transitional B cells. Functional metabolism studies, profiling of whole-cell metabolites, and analysis of cell surface proteins in human B cells suggested that this transition was also associated with increased extracellular adenosine salvage. Follicular B cells increased the abundance of the cell surface ectonucleotidase CD73, which coincided with adenosine 5′-monophosphate–activated protein kinase (AMPK) activation. Differentiation to the follicular B cell stage in vitro correlated with surface acquisition of CD73 on human transitional B cells and was augmented with the AMPK agonist, AICAR. Last, individuals with gain-of-function PIK3CD (PI3Kδ) mutations and increased pS6 activation exhibited a near absence of circulating follicular B cells. Together, our data suggest that mTORC1 attenuation may be necessary for human follicular B cell development. These data identify a distinct metabolic switch during human B cell development at the transitional to follicular stages, which is characterized by an induction of extracellular adenosine salvage, AMPK activation, and the acquisition of metabolic quiescence.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1788-1788
Author(s):  
Nagisa Sakurai ◽  
Manami Maeda ◽  
Sung-UK Lee ◽  
Julie Teruya-Feldstein ◽  
Takahiro Maeda

Abstract LRF (Leukemia/Lymphoma Related Factor, also known as Pokemon, FBI-1, OCZF and ZBTB7a) was originally identified as an interaction partner of the oncoprotein BCL6. LRF can act as a proto-oncogene by repressing the tumor suppressor ARF and cooperates with BCL6 in MEF (mouse embryonic fibroblasts) immortalization. It is highly expressed in human Non-Hodgkin Lymphoma (NHL) cases, in the pathogenesis of which BCL6 is known to be involved (Maeda et al. Nature 2005). Inducible inactivation of the LRF gene in mouse Hematopoietic Stem Cells (HSCs) results in complete block of early B cell development at the HSC/progenitor stages and concomitant development of double positive (DP) T cells in the bone marrow (BM) (Maeda et al. Science 2007). While these findings clearly illustrate key roles of LRF in normal and malignant B cell development, it is not fully identified as to which B cell stages LRF is required during normal B cell development. To elucidate the role of LRF in B cells in vivo, we established and characterized B cell-specific LRF conditional knockout (KO) mice. We took advantage of mb-1 Cre knock-in mice, in which Cre expression is restricted to the B cells after the ProB cell stage. B cell compartments in the BM (PreProB, ProB, PreB and immatureB) are grossly normal in LRFF/ Fmb1-Cre mice. The LRF gene was efficiently eliminated in BM CD19+ B cells revealed by quantitative real-time PCR assay. Furthermore, LRF protein was not detected in purified CD19+ B cells, but seen in CD19-non-B cells, confirming the specific inactivation of the LRF gene in B cells. Thus, despite its critical role at the HSC/progenitor stages, LRF was found to be dispensable for the survival of normal BM B cells. These findings are consistent with the fact that GSI treatment (Maeda et al. Science 2007) or Notch1 loss (Lee and Maeda, unpublished) rescues the defects in early B cell development seen in LRFF/FMx1-Cre+ mice. Notch signaling is necessary for the transitional B cells to commit to the marginal zone B cells (MZB). Inactivation of the component of the Notch pathways in mice results in no MZB development. On the contrary, deletion of the MINT/SHARP gene, a suppressor of Notch signaling, leads to increase of MZB cells and concomitant reduction of follicular B (FOB) cells, indicating that Notch induces MZB cell fate at the transitional B cell stage. Given that LRF is a potent Notch suppressor at the HSC/progenitor stages, we hypothesized that LRF opposes Notch pathway in mature B cells as well. To test this hypothesis, we characterized mature B cell development in LRFF/Fmb1-Cre mice. While transitional B cells were largely unaffected in LRFF/Fmb1-Cre mice, we observed a slight but statistically significant reduction of follicular (FO) B cells (B220+CD19+AA4.1-CD1d-CD23+) and concomitant increase of MZB cells (B220+CD19+AA4.1-CD1d+CD23-) as seen in MINT/SHARP knockout mice. Thus, LRF may also oppose Notch pathways at the branching point for the FOB vs. MZB fate decision. Finally, to determine the role of LRF in Germinal Center (GC) formation in vivo, we characterized secondary lymphoid organs of LRFF/Fmb1-Cre mice after antigen stimulation. Both spleen and Peyer’s Patches were analyzed two weeks after immunization with Chicken Gamma Globulin (NP-CGG). While a GC reaction was robustly induced in control mice upon immunization, GC formation was significantly impaired in LRFF/Fmb1-Cre mice as revealed by immuno-histochemical analysis (IHC) and FACS. Only few GC cells (B220+CD19+FAS+CD38-PNA+) were observed in spleens, and the absolute numbers of GC cells were drastically reduced in LRFF/Fmb1-Cre mice. Residual LRF-deficient GC B cells were mostly negative for CXCR4, which is predominantly expressed in proliferating centroblasts within GCs, suggesting that LRF-deficient GC B cells may have defects in cellular proliferation in response to antigen stimuli. Our data indicates that LRF plays key roles in mature B cell development in the secondary lymphoid organs, but dispensable for the maintenance of early BM B cells.


1996 ◽  
Vol 183 (6) ◽  
pp. 2693-2698 ◽  
Author(s):  
E Sanz ◽  
A de la Hera

Vpre-B and lambda 5 genes, respectively, encode V-like and C-like domains of a surrogate immunoglobulin light chain (psi L). Such psi L complex is expressed in early progenitor B (pro-B) cells, before conventional immunoglobulin heavy (microH) and light (L) chains are produced. We raised a wide panel of monoclonal antibodies (mAbs) against soluble recombinant Vpre-B proteins to study early events in human B cell development. One of these antibodies, B-MAD688, labeled surrogate Ig-complexes on the surface of microH- pro-B cell lines and normal bone marrow cells in immunofluorescence assays. Immunoprecipitations using surface-labeled pro-B cells and B-MAD688 mAb indicated that human psi L is associated with high molecular weight components homologous to the surrogate heavy (psi H) chains described in mouse. Using B-MAD688 and SLC2 mAbs, we were able to distinguish between psi H psi L and microH psi L complexes on the surface of human pro-B and later precursor, pre-B, cells. The finding of psi H psi L complexes in mouse and man lead us to hypothesize a role for psi H-containing receptors in B cell development.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Santi Suryani ◽  
David A. Fulcher ◽  
Brigitte Santner-Nanan ◽  
Ralph Nanan ◽  
Melanie Wong ◽  
...  

Abstract The transitional stage of B-cell development represents an important step where autoreactive cells are deleted, allowing the generation of a mature functional B-cell repertoire. In mice, 3 subsets of transitional B cells have been identified. In contrast, most studies of human transitional B cells have focused on a single subset defined as CD24hiCD38hi B cells. Here, we have identified 2 subsets of human transitional B cells based on the differential expression of CD21. CD21hi transitional cells displayed higher expression of CD23, CD44, and IgD, and exhibited greater proliferation and Ig secretion in vitro than CD21lo transitional B cells. In contrast, the CD21lo subset expressed elevated levels of LEF1, a transcription factor highly expressed by immature lymphocytes, and produced higher amounts of autoreactive Ab. These phenotypic, functional, and molecular features suggest that CD21lo transitional B cells are less mature than the CD21hi subset. This was confirmed by analyzing X-linked agammaglobulinemia patients and the kinetics of B-cell reconstitution after stem cell transplantation, which revealed that the development of CD21lo transitional B cells preceded that of CD21hi transitional cells. These findings provide important insights into the process of human B-cell development and have implications for understanding the processes underlying perturbed B-cell maturation in autoimmune and immunodeficient conditions.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 673-673
Author(s):  
Reema Baskar ◽  
Patricia Favaro ◽  
Warren D. Reynolds ◽  
Pablo Domizi ◽  
Albert G Tsai ◽  
...  

Abstract Human B cell development in adult human bone marrow (BM) is tightly regulated through well-defined stages to produce adaptive immune cells with assembled and functional B cell antigen receptor (BCR)(Martin et al., 2016). To produce mature B cells with functional immunoglobulin receptors, B cell progenitors must undergo multiple stages of highly regulated chromatin remodelling and transcriptional reprogramming which correspond to unique patterns of surface protein expression (Nutt and Kee, 2007). This complex process is frequently dysregulated in B cell neoplasia such as B cell Acute Lymphoblastic Leukemia (B-ALL). B-ALL is highly heterogenous in its phenotypic and clinical presentation, as well as in its underlying molecular features such as DNA methylation patterns and genetic aberrations (Cobaleda and Sánchez-García, 2009). The lack of general mechanism of leukemogenesis has made it difficult to identify when and where adult and pediatric B-ALL blasts diverge from normal B cell development. Here we show that across 5 B-ALL patients and 3 cell lines with diverse phenotypic and clinical presentations, blasts are epigenetically arrested at a conserved point within healthy human B cell development. First, we sought to establish a trajectory of normal B cell development to delineate the phenotypic and concomitant epigenetic changes occurring in BM progenitors as they differentiate into naïve B cells. To capture phenotype, function, and epigenetic state via single cell chromatin content (chromotype) of developing B cells in BM, we developed a multiplexed, high throughput, single cell proteomic method (chromotyping) to simultaneously measure cell surface markers, intracellular regulators such as transcription factors and chromatin structure regulators such as histone post-translational modifications (i.e. H3K4me3, H3K27me3, H2AK119ubi) and chromatin re-modelers (i.e. CTCF, DNMT1, MLL1). Using these surrogates for single cell, global chromatin content, we notably identified 3 coordinated epigenetic inflection or switch (S) points in healthy B cell development corresponding to previously characterized phenotypic landmarks of STAT5 signalling and active re-arrangement of IgH loci (S1), CD24 expression-linked high translation and proliferation (S2), and IgM and CD20 expression-linked BCR assembly completion (S3) (Bendall et al., 2014). To determine how these coordinated chromotypes translated to chromatin accessibility and primed gene regulation networks, we isolated BM B cell population from these chromatin content transition points and analysed them with our modified ATAC-seq protocol, InTAC-seq (Baskar et al., 2021). Strikingly, the chromatin accessibility landscape revealed putative oncogenic priming with high activity of leukemic TFs such as PAX5, TCF3, ZEB1 and ID4 predominantly at S2 and some at S3 switch points. By integrating our InTAC-seq data with publicly available single cell ATAC and RNA seq data on BM, we located this oncogenic primed state as existing from S2 to before S3 (IgH rearranged, late pro- / Pre-B cell stage) in healthy B cell development. This integration further associated this state with high activity of ASCL1 (role in chromatin remodelling) and high expression of STMN1 (Leukaemia-associated phosphoprotein 18). Finally we showed that across B-ALL patients (n=5) and cell lines (REH, NALM6, SUBP15), chromatin accessibility of neoplastic B cells indeed continue to occupy this point of oncogenic vulnerability in the B cell developmental space from S2 to right before S3 in our integrated scATAC map, despite variable immunophenotypes. This corresponds to a coordinated minima in our chromotyping map (lowest, coordinated abundance of chromatin structure regulators across trajectory). Further analysis of B-ALL patients reinforced the divergence between immunophenotypic and epigenetic heterogeneity within and between samples. Taken together, our findings identify key epigenetic switch points in B cell development and their underlying chromatin accessibility and gene expression patterns. Consequently, we reveal a point of epigenetic vulnerability in healthy B cell development that could be predisposed to leukemic transformation. This work opens up the possibility for new diagnostic strategies for B-ALL utilizing chromatin content and could pave the way for epigenetic modulation-based treatments beyond DNA methylation inhibition. Disclosures Davis: Novartis Pharmaceuticals: Honoraria; Jazz Pharmaceuticals: Research Funding.


2010 ◽  
Vol 207 (4) ◽  
pp. 837-853 ◽  
Author(s):  
Robert B. Henderson ◽  
Katarzyna Grys ◽  
Anne Vehlow ◽  
Carine de Bettignies ◽  
Agnieszka Zachacz ◽  
...  

Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD− transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection.


Author(s):  
J. Thiel ◽  
N. Venhoff ◽  
I. Janowska ◽  
A. Troilo ◽  
N. Frede ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1044-1044 ◽  
Author(s):  
Kara L. Davis ◽  
Sean C Bendall ◽  
El-ad D. Amir ◽  
Erin F. Simonds ◽  
Astraea Jager ◽  
...  

Abstract Abstract 1044 Background: Normal B cell development in the bone marrow (BM) is a seemingly well-understood, progressive process and thus represents a suitable test system in which to apply an algorithmic approach to modeling cellular differentiation. In humans, hematopoietic stem cells form lymphoid progenitor cells that develop into pro- then pre- B cells and finally those cells that escape negative selection become immature B cells that leave the BM for the peripheral immune organs. Flow cytometry can track these stages using the expression of immunophenotypic cell surface markers, including those for progenitors (CD34, CD38), early B cell populations (CD10), as well as those of more mature B cells (CD20, IgM). Expression of the B cell transcription factor PAX5, and immune diversity conferring enzymes terminal deoxynucleotidyl transferase (TdT) and recombination-activating gene (RAG) can also be tracked at the single cell level. Regulatory signaling by factors in the BM orchestrates critical checkpoints in the B cell developmental program, such as Interleukin (IL)-7-mediated STAT5 phosphorylation and signaling downstream the preB cell receptor/B cell receptor (BCR) (p-BLNK, p-Syk, p-PLCγ2, p-Erk). Successful coordination of these signals with immunoglobulin gene rearrangement results in a burst of proliferative expansion prior to maturation/exit to the periphery. Failure of any one of these processes results in B cell deletion while certain dysregulations driven by oncogenic processes can result in malignancy. While much of this core understanding has been founded in murine models, the rarity of early B cell progenitors and lack of genetic tools has complicated definition of B cell development in humans. Using 42 parameter mass cytometry in combination with a novel single-cell trajectory finding algorithm, we have now laid a human B cell developmental process in primary human BM to an unprecedented level of detail, mapping out the expression pattern of virtually all relevant B cell immunophenotypic markers as well as intracellular enzyme, transcription factor and regulatory modification simultaneously, at the single cell level. Methods: The mononuclear cell fraction of multiple healthy human marrows was characterized by simultaneously analyzing 42 antibody parameters with mass cytometry targeting a multitude of phenotypic markers, intracellular signaling molecules, hallmarks of cell cycle and apoptosis all in the context of in vitro perturbations relevant to B cell development (including IL-7 and BCR crosslinking). The resulting multidimensional data was modeled using a novel, scalable, robust graph-based trajectory algorithm that iteratively refines a solution trajectory using random landmarks to reduce variability. Populations of interest were prospectively isolated and a novel qPCR assay was created to quantitate immunoglobulin heavy chain (IgH) rearrangement in genomic DNA. Results/Conclusion: Modeling of the resulting data was undertaken using this algorithm (termed Wanderlust) that devised and ordered cellular relationships based on the average phenotypic progression from our defined starting point, in this case, CD34+CD38- hematopoietic stem cells, in order to calculate a developmental trajectory. The predicted trajectory was then used to inform a traditional 'gating' analysis of the data and provide a higher resolution view of human B cell development than previously published. It both confirmed established steps in human B cell progression, and importantly, revealed new populations of early B cell progenitors based on expression of CD34, CD38, CD24 and TdT. These populations were corroborated to be of B-lineage and ordered as predicted based on the progressive rearrangement of the IgH locus by qPCR of extracted genomic DNA. We aligned previously unregistered key developmental checkpoints such as STAT5 activation in response to IL-7 and proliferation in response preBCR expression with traditional immunophenotypic cell populations. While predicted in silico, and then molecularly verified and staged in vitro, these regulatory events all lay within discrete cell subsets that can now be demarcated using conventional cytometric methods. Together, this provides a backbone on which to further examine both healthy regulatory events as well as the corruption of this developmental process such as in malignant or immunodeficient states. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristina Ottens ◽  
Anne B. Satterthwaite

Strict control of B lymphocyte development is required for the ability to mount humoral immune responses to diverse foreign antigens while remaining self-tolerant. In the bone marrow, B lineage cells transit through several developmental stages in which they assemble a functional B cell receptor in a stepwise manner. The immunoglobulin heavy chain gene is rearranged at the pro-B stage. At the large pre-B stage, cells with a functional heavy chain expand in response to signals from IL-7 and the pre-BCR. Cells then cease proliferation at the small pre-B stage and rearrange the immunoglobulin light chain gene. The fully formed BCR is subsequently expressed on the surface of immature B cells and autoreactive cells are culled by central tolerance mechanisms. Once in the periphery, transitional B cells develop into mature B cell subsets such as marginal zone and follicular B cells. These developmental processes are controlled by transcription factor networks, central to which are IRF4 and IRF8. These were thought to act redundantly during B cell development in the bone marrow, with their functions diverging in the periphery where IRF4 limits the number of marginal zone B cells and is required for germinal center responses and plasma cell differentiation. Because of IRF4’s unique role in mature B cells, we hypothesized that it may also have functions earlier in B cell development that cannot be compensated for by IRF8. Indeed, we find that IRF4 has a unique role in upregulating the pre-B cell marker CD25, limiting IL-7 responsiveness, and promoting migration to CXCR4 such that IRF4-deficient mice have a partial block at the pre-B cell stage. We also find that IRF4 acts in early transitional B cells to restrict marginal zone B cell development, as deletion of IRF4 in mature B cells with CD21-cre impairs plasma cell differentiation but has no effect on marginal zone B cell numbers. These studies highlight IRF4 as the dominant IRF family member in early B lymphopoiesis.


Sign in / Sign up

Export Citation Format

Share Document